期刊文献+

Lower Bound for Quantum Integration Error on Anisotropic Sobolev Classes

Lower Bound for Quantum Integration Error on Anisotropic Sobolev Classes
原文传递
导出
摘要 We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobolev class R(Wpr([0, 1]d)) (r R+d). Then combining this result with our previous one we determine the optimal bound of n-th minimal query error for anisotropic Hblder- Nikolskii class R(H∞r([0,1]d)) and Sobolev class R(W∞r([0,1]d)). The results show that for these two types of classes the quantum algorithms give significant speed up over classical deterministic and randomized algorithms. We study the approximation of the integration of multivariate functions in the quantum model of computation. Using a new reduction approach we obtain a lower bound of the n-th minimal query error on anisotropic Sobolev class R(Wpr([0, 1]d)) (r R+d). Then combining this result with our previous one we determine the optimal bound of n-th minimal query error for anisotropic Hblder- Nikolskii class R(H∞r([0,1]d)) and Sobolev class R(W∞r([0,1]d)). The results show that for these two types of classes the quantum algorithms give significant speed up over classical deterministic and randomized algorithms.
作者 Pei Xin YE
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第4期669-678,共10页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China (Grant Nos. 10501026 and 60675010)
关键词 quantum integration anisotropic Sobolev classes Holder-Nikolskii classes n-th minimal query error quantum integration, anisotropic Sobolev classes, Holder-Nikolskii classes, n-th minimal query error
  • 相关文献

参考文献1

二级参考文献25

  • 1Bakhvalov, N.S., On the rate of convergenc of indeterministic integration processes within the functional classes Wp^(l), Theory Probab. Appl., 7 (1962), 227.
  • 2Bakhvalov, N.S., Optimal convergence bounds for quadrature processes and integration methods of Monte Carlo type for classes of functions, Z. Vycisl. Mat. i Mat. Fiz., supple, 4 , 1964, 5-63(in Russian).
  • 3Bakhvalov, N.S., A lower bound for the randomness measure required in the use of the Monte-Carlo method. U.S.S.R, Comput. Math. Math. Phys., 5:4 (1965), 252-257.
  • 4Blum, L., Cucker, F., Shub, M., Smale, S., Complexity and Real Computation, Springer Verlag,New York, 1998.
  • 5G. Brassard, P. Hoyer, M. Mosca, A. Tapp, Quantum amplitude amplification and estimation,2000.
  • 6W. Dahmen, R. DeVore, K. Scherer, Multi-dimensional spline approximation, SIAM J. Numer.Anal., 17 (1980), 380-402.
  • 7Fang Gensun, Ye Peixin, Integration error for multivariate functions from anisotropic classes, J.Complexity, 19 (2003), 610-627.
  • 8L. Grover, A framework for fast quantum mechanical algorithms, Proceedings of the 30th Annual ACM Symposium on the theory of Computing, ACM Press, New York, 53-62, 1998.
  • 9S. Heinrich, Random approximation in numerical analysis, In K. D. Bierstedt, et al., Function Analysis: Proceedings of the Essen Conference, V. 150 of Leer. Notes in pure and appl. Math.,123-171, New York, Bessel, Hong Kong, 1994, Marcel Dekker.
  • 10S. Heinrich, Quantum summation with an application to integration, J. Cornplezity, 18, (2002),1-50.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部