期刊文献+

商高数的Jesmanowicz猜想 被引量:2

On Jesmanowicz's Conjecture Concerning Pythagorean Numbers
原文传递
导出
摘要 利用Bilu、Hanrot和Voutier关于本原素因子存在性理论及二次丢番图方程解的表示方面的一些精细结果证明:当a=n+1,b=2n(n+1),c=2n(n+1)+1时,方程a^x+b^y=c^z仅有正整数解(x,y,z)=(2,2,2). We show that when a = 2n+1,b = 2n(n+l),c = 2n(n+1)+1 with n positive integer, the equation a^x + b^y =c^z has only the positive integer solution (x, y, z) = (2, 2, 2). The proof is based on using the theorem about the existence of primitive divisors of Lucas numbers due to Bilu, Hanrot & Voutier and some fine results on the representation of the solutions of quadratic diophantine equations.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第2期297-300,共4页 Acta Mathematica Sinica:Chinese Series
基金 广东省自然科学基金项目(8151027501000114) 佛山科学技术学院科研基金项目
关键词 商高数 JESMANOWICZ猜想 LUCAS序列 Pythagorean numbers Jesmanowicz conjecture Lucas sequences
  • 相关文献

参考文献2

二级参考文献1

共引文献1

同被引文献14

  • 1邓谋杰.关于丢番图方程(15n)^x+(112n)^y=(113n)^z[J].黑龙江大学自然科学学报,2007,24(5):617-620. 被引量:14
  • 2Jesmanowicz L. Some remarks on Pythagorean numbers [ J ]. Wiakom Mat Ser, 1956,1 ( 2 ) : 196-202 ( in Polish).
  • 3Slerpinski W. On the equation 3x + 4r = 5 [ J ]. Wiakom Mat Ser, 1956, 1(2) :194-195(in Polish).
  • 4Deng Moujie, Cohen G L. On the conjecture of Je manowfcz concerning Pythagorean tripies [ J 1- Bull Aust Math Sco, 1998,57(3) :515-524.
  • 5Ko C. On Pythagorean numbersa = 2n + 1 , b = 2n(n + 1 ) , c = 2n(n + 1 ) + 1 J]. Journal of Sichuan Universi- ty : Natural Sciences, 1963,2:9-14 ( in Chinese).
  • 6KoC, SunQ. On Pythagoreannumbersa = 2n+l ,b = 2n(n + 1) , c = 2n(n + 1) + 1 (11)[J]. Journal of Si- ehuan University : Natural Sciences, 1964,3 : 1-12 ( in Chi- nese).
  • 7KoC. On Pythagoreannumbersa =2n+l ,b =2n(n + 1) , c = 2n(n + 1) + 1 (III) [J]. Journal of Sichuan U- niversity : Natural Sciences, 1964,4 : 11-26 ( in Chinese ).
  • 8Rao D. M. A note on the diophantine equation (2n + 1 ) + (2n ( n + 1 ) ) y = (2n ( n + 1 ) + 1 )' [ J ]. Journal of Si- chuan University: Natural Sciences, 1960, 1 : 79-80 ( in Chinese).
  • 9杨志娟,翁建欣.关于丢番图方程(12n)x+(35n)y=(37n)z[J].纯粹数学与应用数学,2012,28(5):698-704. 被引量:10
  • 10程智,孙翠芳,杜先能.关于Diophantine方程(20n)~x+(21n)~y=(29n)~z(英文)[J].应用数学,2013,26(1):129-133. 被引量:12

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部