期刊文献+

黏性耗散对微喷管性能的影响 被引量:2

Effects of Viscous Dissipation on Micro Nozzle's Performance
下载PDF
导出
摘要 以FLUENT6.1为工具,利用数值计算求解二维稳态可压缩N-S方程和欧拉方程,模拟了扩张比为5.4的收缩-扩张微喷管内超音速流体流动,分析了黏性耗散对微喷管内部流体流速分布和静压力分布的影响,进而研究了黏性耗散对微喷管的流量系数和推力效率等推进性能参数的影响。数值计算结果表明,在微喷管收缩段,惯性力影响相对较大,黏性耗散对流体流动的影响相对较小;在微喷管扩张段,黏性耗散的影响相对增加,惯性力影响相对减小,黏性耗散将影响微喷管内流体的流动方向;在喷管出口,主流流体偏离的程度减小,进而影响微喷管的推进性能参数。 Based on the FLUENT6.1 software, the supersonic flow in micro convergent-divergent nozzle was simulated through solving the two-dimensional steady compressible Navier-Stokes equations and Euler equations with the numerical calculation, where the expansion ratio of the nozzle was 5.4. The effects of vicious dissipation on velocity contours and static pressure contours in the micro nozzle were analyzed. Besides that, the influences of vicious dissipation on flow coefficient and thrust efficiency were further studied. Numerical computing results show that the impact of inertia force is greater and the effect of viscous dissipation on the fluid flow is relatively less in the micro nozzle convergent section. In the micro nozzle divergent section, the impact of inertia force becomes less, while the influence of viscous dissipa-tion grows greater, and the fluid flow direction is affected. At the exit of the nozzle, the deviation of the mainstream fluid becomes less, and affects the thrust performance of the micro nozzle.
出处 《微纳电子技术》 CAS 北大核心 2010年第3期163-169,共7页 Micronanoelectronic Technology
基金 国家杰出青年科学基金资助项目(50825603)
关键词 数值计算 黏性耗散 微喷管 流量系数 推力效率 numerical computing viscous dissipation micro nozzle flow coefficient thrust efficiency
  • 相关文献

参考文献10

  • 1BAYT R L. Analysis, fabrication and testing of a MEMS- based micro propulsion system[D]. USA: MIT, 1999.
  • 2BAYT R L, BREUER K S. System design and performance of hot and cold supersonic microjets[C]//Proc of 39^th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 2001.
  • 3KIM S C. Calculation of low-Reynolds-number resistojet nozzles [J]. Journal of Spacecraft and Rocket, 1994, 31 (2): 259 - 264.
  • 4WANG M R, LI Z X. Numerical simulations on performance of MEMS-based nozzles at moderate or low temperatures [J]. Microfluidicsand Nanofluidcs, 2004, 1 (1): 62-70.
  • 5LOUISOS W F, HITT D L. Optimial expander angle for viscous supersonic flow in 2-D micro-nozzles [C] // Proe of 35th AIAA Fluid Dynamics Conf. Toronto, Canada, 2005.
  • 6LOUISOS W F, HITT D L. Heat transfer & viscous effects in 2D & 3D micro-nozzles[C]//Proc of 37^th AIAA Fluid Dynamics Conference and Exhibit. Miami, FL, 2007.
  • 7孙建威,刘明侯,张根烜,张先锋,陈义良.滑移边界条件对二维微喷管数值模拟结果的影响[J].宇航学报,2005,26(6):707-711. 被引量:5
  • 8杨海威,赵阳,张大伟.微喷管过渡区流动的DSMC模拟研究[J].哈尔滨工业大学学报,2007,39(5):817-820. 被引量:6
  • 9尹乐,陈伟芳,石于中.微喷管流动的DSMC方法模拟[J].国防科技大学学报,2004,26(5):9-12. 被引量:1
  • 10SCHLICHTING H. Boundary-layer theory[M]. New York: McGraw-Hilt, 1979:327 - 330.

二级参考文献24

  • 1丁英涛,姚朝晖,何枫.微喷管内气体流动特性研究[J].工程力学,2004,21(3):190-195. 被引量:8
  • 2Robert l,. Bayl. Analysis, Fabrication and testing of a MEMS-based micropropulsion system[D]. Bostott, USA: Dept. of Aenrnautics and Asttronaulics, M.I.T, 1999.
  • 3Chih MiHg 11o, Yu-chong Tai. Micro-eleetro-mechanical-systems(MEMS) and fluid flows[J]. Annu. Rev. Fluid Mech, 1998, 30:579 - 612.
  • 4Frank Kreith et al. The MEMS handbook[M]. Boca Raton: CRC Press, 2002.
  • 5Markelov G N, lanov M S, Gimelshein S F, Levin D A. Statistical simulation of near-confinumn flows with separation, In. Proc. 23rd Intern. Syrup. on RGD, AlP Conference proceedings[C]. 2003,663 : 457 - 464.
  • 6Mohaned Gad-Hak. The fluid mechanics of microdeviees - the freeman scholar lecture [J]. Journal of fluids engineering, 1999, 121 : 5 -33.
  • 7Maxwell J C. On stresses in rarefied gascs arising from inequalities of temperature[J]. Philosophical Transactions of Ihe Toyal Society Part 1,1879,170:231 - 256.
  • 8Smoluchowski von M. Ueber Warmetcitungin verdunnten gasen[J].Mutalen der Physik and Chemi, 1998.64:101 - 130.
  • 9Beskok A. Simulation of heat and momentum transfer in complex miero-geomelries[D]. Princeton University, USA, 1994.
  • 10Markelov G N and lvanov M S. Numerical sludy of 2D/3D micronoz zle flows, CP585 [C]. In. Rarefied Gas Dynamics: 22 Inl. Syrup ed. by T.J. gartel and M.A. Gallis, AlP, Melvillc, New Ytork 2001, 585:539 - 546.

共引文献7

同被引文献16

  • 1刘赵淼,张谭.Laval型微喷管内气体流动的计算及分析[J].航空动力学报,2009,24(7):1556-1563. 被引量:10
  • 2李旭辉.MEMS发展应用现状[J].传感器与微系统,2006,25(5):7-9. 被引量:38
  • 3杨海威,赵阳,张大伟.微喷管过渡区流动的DSMC模拟研究[J].哈尔滨工业大学学报,2007,39(5):817-820. 被引量:6
  • 4OMER S;ILHAN B;TUBA B.Size and expansion ratio analysis of micro nozzle gas flow.,2009.
  • 5CHOUDHURI A R;BAIRD B;GOLLAHALLI S R.Effects of geometry and ambient pressure on micro-nozzle flow.,2001.
  • 6LOUWERSE M C;JANSEN H V;GROENENDIJK M N W.Nozzle fabrication for micro-propulsion of a micro-satellite.,2009(04).
  • 7LEE S W;KIM H C;KEON K.A Monolithic Inkjet Print Head:Dome Jet.,2001.
  • 8GIUSTINO A.Interferometric GPS/Micro-Mechanical Gyro attitude determination system:A study into the integration issues.,1998.
  • 9LEWIS H J;JANSON S W;COHEN R B.Digital Micro-propulsion.,1999.
  • 10DOMS M;MUELLER J.A micro machined vapor jet pump.,2005.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部