期刊文献+

NONLINEAR RANK-ONE MODIFICATION OF THE SYMMETRIC EIGENVALUE PROBLEM

NONLINEAR RANK-ONE MODIFICATION OF THE SYMMETRIC EIGENVALUE PROBLEM
原文传递
导出
摘要 Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In this paper, we first study the existence and uniqueness of eigenvalues, and then investigate three numerical algorithms, namely Picard iteration, nonlinear Rayleigh quotient iteration and successive linear approximation method (SLAM). The global convergence of the SLAM is proven under some mild assumptions. Numerical examples illustrate that the SLAM is the most robust method. Nonlinear rank-one modification of the symmetric eigenvalue problem arises from eigenvibrations of mechanical structures with elastically attached loads and calculation of the propagation modes in optical fiber. In this paper, we first study the existence and uniqueness of eigenvalues, and then investigate three numerical algorithms, namely Picard iteration, nonlinear Rayleigh quotient iteration and successive linear approximation method (SLAM). The global convergence of the SLAM is proven under some mild assumptions. Numerical examples illustrate that the SLAM is the most robust method.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2010年第2期218-234,共17页 计算数学(英文)
基金 supported in part by NSF grants DMS-0611548 and OCI-0749217 and DOE grant DE-FC02-06ER25794 supported in part by NSF of China under the contract number 10871049 and Shanghai Down project 200601.
关键词 Nonlinear eigenvalue problem Rank-one modification Rank-one damping Low-rank damping PICARD Successive linear approximation method Nonlinear Rayleigh quotient iteration SAFEGUARD Global convergence. Nonlinear eigenvalue problem, Rank-one modification, Rank-one damping, Low-rank damping, Picard, Successive linear approximation method, Nonlinear Rayleigh quotient iteration, Safeguard, Global convergence.
  • 相关文献

参考文献21

  • 1G. Golub, Some modified matrix eigenvalue problems, SIAM Rev., 15:2 (1973), 318-334.
  • 2J. Bunch, C. Nielsen and D. Sorensen, Rank-one modification of the symmetric eigenproblem, Numer. Math., 31 (1978), 31-48.
  • 3S. Solov'ev, Preconditioned iterative methods for a class of nonlinear eigenvalue problems, Linear. Algebra. Appl., 415 (2006), 210-229.
  • 4T. Betcke, N.J. Higham, V. Mehrmann, C. Schroder and F. Tisseur, NLEVP: A collection of nonlinear eigenvalue problems, http ://eprints. ma. man. ac. uk/1071/, (2008).
  • 5T. Lenahan, Calculating dispersion derivatives in fiber optic design, Bell Syst. Tech. J., 62 (1983), 2663-2694.
  • 6L. Kaufman, Eigenvalue problems in fiber optic design, SIAM J. Matrix Anal. A., 28:1(2006).
  • 7G. Golub and C.V. Loan, Matrix Computations (3rd ed.), The Johns Hopkins University Press, Baltimore, 1996.
  • 8G. Stewart and J.G. Sun, Matrix Perturbation Theory, Academic Press, San Diego, 1990.
  • 9J.M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem, Numer. Math., 36 (1981), 177-195.
  • 10J. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, 1997.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部