期刊文献+

A Note on Equilibrium of Eventually Strongly Monotone Skew-product Semiflows

A Note on Equilibrium of Eventually Strongly Monotone Skew-product Semiflows
原文传递
导出
摘要 In this paper, we show that for an eventually strongly monotone skew-product semiflow τ, the strict ordering on Ec (the set consisting of continuous equilibria of τ) implies the strong one. In this paper, we show that for an eventually strongly monotone skew-product semiflow τ, the strict ordering on Ec (the set consisting of continuous equilibria of τ) implies the strong one.
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2010年第2期307-310,共4页 应用数学学报(英文版)
基金 Partially supported by the National Basic Research Program of China,973 Project (No. 2005CB321902) the Key Lab of Random Complex Structures and Data Science,CAS
关键词 continuous equilibrium eventually strongly monotone skew-product semiflow continuous equilibrium, eventually strongly monotone, skew-product semiflow
  • 相关文献

参考文献7

  • 1Arnold, L., Chueshov, I.D. Order-preserving random dynamical systems: equilibria, attractors, applications. Dyn. Stability Systems, 13:265-280 (1998).
  • 2Arnold, L., Chueshov, I.D. Cooperative random and stochastic differential equations. Discrete Continuous Dyn. Systems, 7:1-33 (2001).
  • 3Chueshov, I. Monotone Random Systems. Theory and Applications, in: Lecture Notes in Mathematics, Vol. 1779, Springer, Berlin, Heidelberg, 2002.
  • 4Matano, H. Existence of nontrivial unstable sets for equilibriums of strongly order preserving systems. J. Fac. Sci. Univ. Kyoto, 30:645-673 (1984).
  • 5Novo, S., Nunez, C., Obaya, R. Almost automorphic and almost periodic dynamics for quasimonotone nonautonomous functional differential equations. J. Dynam. Differential Equations, 17(3): 589-619 (2005).
  • 6Novo, S., Obaya, R. Strictly ordered minimal subsets of a class of convex monotone skew-product semiflows. J. Differential Equations, 196:249-288 (2004).
  • 7Smith, H.L. Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems, Amer. Math. Soc., Providence, RI, 1995.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部