期刊文献+

基于30m^3聚合釜的纳米CaCO_3原位聚合PVC树脂颗粒特性预测与优化 被引量:1

Prediction and optimization of the particle characteristics of PVC manufactured by in-situ polymerization of nano-CaCO_3 in 30 m^3 polymerizers
下载PDF
导出
摘要 通过微乳化分散技术使CaCO3实现良好分散,通过氯乙烯原位悬浮聚合制得了纳米CaCO3微乳化法原位聚合PVC树脂(简称纳米PVC树脂)。为解决纳米PVC树脂的颗粒形态控制难题,提出了基于组合神经网络的软测量方法,建立了纳米PVC树脂颗粒特性的软测量预测模型,应用效果表明该软测量模型能较准确地预测纳米PVC树脂的平均粒径。利用该软测量预测模型在30 m3聚合釜上实现了纳米PVC树脂颗粒特性优化,制得具有较理想颗粒特性的纳米PVC树脂。 Nano-CaCO3 in-situ polymerization PVC resin ( nano-PVC resin) was manufactured by in-situ polymerization of vinyl chloride with nano-CaCO3 which was well dispersed by microemulsion dispersion techniques. To resolve the difficult problems of controlling the particle morphology of nano-PVC resin, a soft-measuring method based on combined neural networks was provided, and thus a soft-measuring prediction model for nano-PVC particle characteristics was developed. The application results showed that the soft-measuring model could accurately predict the mean particle size of nano-PVC resin. Optimization of particle characteristics of nano-PVC resin was successfully implemented based on the soft-measuring model in 30 m^3 polymerizers, and thus nano-PVC resin with desirable particle characteristics was prepared.
出处 《聚氯乙烯》 CAS 2010年第1期23-25,共3页 Polyvinyl Chloride
关键词 PVC树脂 纳米碳酸钙 颗粒特性 组合神经网络 预测 优化 PVC resin nano-CaCO3 particle characteristics combined neural network prediction optimization
  • 相关文献

参考文献4

  • 1韩和良,钱锦文,徐雨尧,李文学.纳米CaCO_3微乳液存在下的万吨级氯乙烯原位聚合技术[J].聚氯乙烯,2001,29(4):11-15. 被引量:15
  • 2Wolpert D H. Stacked generalization [J]. Neural Networks, 1992,5 (2) :241 - 259.
  • 3Sridhar D V, Seagrave R C, Bartlett E B. Process Modeling Using Stacked Neural Networks [J]. AIChE J, 1996,42 (9) :2529 - 2539.
  • 4Zhang J, Morris A J, Martin E B, et al. Prediction o f polymer quality in batch polymerization reactors using robust neural networks[J]. Chem Eng J, 1998, 69 (2): 135 - 143.

二级参考文献5

共引文献14

同被引文献7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部