期刊文献+

关于Bernoulli卷积的一个谱性质

A spectral property of the Bernoulli convolutions
下载PDF
导出
摘要 设μρ是R上的参数为0<ρ<1的Bernoulli卷积测度.Hu和Lau证明了L2(μ)空间中含有一个无限指数型正交序列的充要条件是ρ是分数p/q的方根,其中p为奇数,q为偶数.本文讨论当ρ为其余情形时,指数型正交序列集中元素个数,证明了当ρ-1不是奇数型方程的根或者其本原最小多项式g(x)满足g(l)为奇数时,则L2(μ)中任何指数型正交集至多含有两个元素. Let be the Bernoulli convolution associated with on . Hu and Lau proved that the space contained an infinite orthonormal set of exponential functions if and only if is the nth root of a fraction where is odd and even. In this paper, we discuss the number of the orthonormal set of exponential function in other cases. And we prove that either isn't a root of a equation of "odd" type or is even, any orthonormal set of exponential function in has at most two elements, where is the minimal primitives polynomial for.
出处 《武汉工业学院学报》 CAS 2010年第1期103-104,108,共3页 Journal of Wuhan Polytechnic University
关键词 Bernoulli卷积测度 最小本原多项式 正交集 Bernoulli convolution minimal primitives polynomial orthonormal set
  • 相关文献

参考文献11

  • 1Jorgensen P, Pedersen S. Dense analytic subspaces in fractal L2-spaces [ J ]. J Anal Math. 1998, 75: 185-228.
  • 2Falconer K. Fractal Geometry: Mathematical Foundations and Applications [ M ]. Chichester: John Wiley & Sons, 1990.
  • 3Lau K S, Ngai S M. Multifractal measures and a weak separation condition [ J ]. Adv Math, 1999, 141: 45-46.
  • 4Lau K S, Ngai S M, Rao H. Iterated function systems with overlaps and self-similar measures [J]. J London Math Soc. 2001, 63: 249-268.
  • 5Peres Y, Schlag W, Solomyak B. Sixty years of Bernoulli convolutions [ J ]. Progr Probab Birkhauser Basel, 2000, 46: 39-65.
  • 6Laba I, Wang Y. On spectral Cantor measures [J]. J Funct Anal. 2002, 193: 409-420.
  • 7Laba I, Wang Y. Some properties of spectral measures [ J ]. Appl Comput Harmon Anal, 2006, 20: 149-157.
  • 8Strichartz R. Remarks on " Dense analytic subspaces in fractal L2-spaces" by P. E. T. Jorgensen and S. Pedersen [ J]. J Anal Math, 1998, 75 : 229-231.
  • 9Strichartz R. Mock Fourier series and transforms associated with certain Cantor measures [ J ]. J Anal Math, 2000, 81: 209-238.
  • 10Strichartz R. Convergence of mock Fourier series[J]. J Anal Math. 2006, 20: 333-253.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部