期刊文献+

一种基于贝叶斯方法的多分类器组合优化算法 被引量:2

An Optimization Algorithm for Combining Multiple Classifiers Based on Bayesian Approach
下载PDF
导出
摘要 提出了一种基于贝叶斯方法的多分类器组合优化算法和阈值改进方法。首先,计算分类器对各个类别的置信度。然后,以各分类器的置信度为先验概率,采用向量求和将各分类器的先验概率向量进行组合,得出最终输出向量,最后通过优化阈值提高综合分类器识别精度。在此后的实验数据表明:该算法具有方法简单、运算速度快、分类精度高等优点。 This paper proposed an optimization algorithm for combining multiple classifiers based on Bayesian aproach and the method to improve the threshold.Firstly,these classifiers's confidence was computed.Secondly,these classifiers's confidence was used as pre-probability,and these pre-probability's vectors were combinated by adding these vectors.The final output vector was obtained.Lastly,the compositive classifier's recognizing precision was improved by threshold optimization.Experimental data showed that this arithmetic has simple,fast and high classification accuracy.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2010年第1期34-37,共4页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(60743008) 河南科技大学教改项目(G2003-21) 河南科技大学实验技术开发基金项目(SY0304016)
关键词 贝叶斯网络 多分类器 阈值 反垃圾邮件 Bayesian network Multiple classifiers Threshold Anti-spam.
  • 相关文献

参考文献9

二级参考文献36

  • 1曹锐,李宏光,李昊阳.一类混杂系统Petri网模型的优化算法的研究[J].微计算机信息,2005,21(1):27-28. 被引量:27
  • 2尚文倩,黄厚宽,刘玉玲,林永民,瞿有利,董红斌.文本分类中基于基尼指数的特征选择算法研究[J].计算机研究与发展,2006,43(10):1688-1694. 被引量:38
  • 3唐歆瑜,乐文忠,李志成,李军义.基于知网语义相似度计算的特征降维方法研究[J].科学技术与工程,2006,6(21):3442-3446. 被引量:16
  • 4[1]Heckerman D. Bayesian networks for data mining [J]. Data Mining and Knowledge Discovery, 1997, 1: 79~119.
  • 5[2]Heckerman D, Geiger D, Chickering D. Learning Bayesian Networks: the combination of knowledge and statistical data [J]. Machine Learning, 1995, 20: 196~243.
  • 6[3]Geiger D, Heckerman D. A characterization of the Dirichlet distribution with applicable to learning Bayesian networks [A]. In Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence [C]. Montreal, QU, 1995. 196~207.
  • 7[4]Cooper G, Herskovits E. A Bayesian method for the induction of probabilistic networks from data [J]. Machine Learning, 1992, 9: 309~347.
  • 8[5]Dagum P, Luby M. Approximating probabilistic inference in Bayesian belief networks is NP-hard [J]. Artificial Intelligence, 1993, 60: 141~153.
  • 9[6]Chickering D. Learning equivalence classes of Bayesian-network structures [A]. In Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence [C]. Portland, OR: Morgan Kaufmann, 1996.
  • 10[7]Heckerman D, Mamdani A, Wellman M. Real-world applications of Bayesian networks [J]. Communications of the ACM, 1995, 38 (3): 24~26.

共引文献186

同被引文献22

  • 1钟延辉,傅彦,陈安龙,关娜.基于抽样的垃圾短信过滤方法[J].计算机应用研究,2009,26(3):933-935. 被引量:15
  • 2刘伯权,刘喜,吴涛.基于共轭先验分布的深受弯构件受剪承载力概率模型分析[J].工程力学,2015,32(4):169-177. 被引量:8
  • 3邓维维,彭宏.移动环境下的垃圾短信过滤系统的研究[J].计算机应用,2007,27(1):221-224. 被引量:14
  • 4中华人民共和国国家质量监督检验检疫总局.测量不确定度评定与表示:JJFl059.1-2012[S].北京:中国质检出版社,2012.
  • 5ELSTER C. Bayesian uncertainty analysis compared with the application of the GUM and its supplements [ J ]. Metrologia, 2014,51 (4) :189 -200.
  • 6DESIMONI E, BRUNETTI B. Uncertainty of measurement and conformity assessment: a review [ J ]. Analytical and bio analytical chemistry, 2011,400 ( 6 ) : 1729 - 1741.
  • 7BATTISTELLI L, CHIODO E, LAURIA D. A new methodology for uncertainty evaluation in risk assessment: Bayesian estimation of a safety index based upon extreme values [ C ]//International Symposium on Power Electronics, Electrical Drives, Automation & Motion. IEEE ,2008:439 - 444.
  • 8IUCULANO G, NIELSEN L,ZANOBINI A, et al. The principle of maximum entropy applied in the evaluation of the measurement uncertainty [ J ] . IEEE transactions on instrumentation & measurement,2007,56 ( 3 ) :717 - 722.
  • 9ZHANG X M, ZHANG H Z. Uncertainty analysis for pump test based on maximum entropy and Monte Carlo method[C]//Proceedings of 2010 IEEE the 17th International Conference on Industrial Engineering and Engineering Management. 2010 : 1628 - 1631.
  • 10FANG X, SONG M. Estimation of maximum-entropy distribution based on genetic algorithms in evaluation of the measurement uncertainty [ C ]//Intelligent Systems (GCIS) ,2010 Second WRI Global Congress on IEEE. 2010 : 292 - 297.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部