期刊文献+

高阶线性常微分方程非振动解的零点个数问题 被引量:1

Zero Number of Nonoscillatory Solutions for Higher-order Liner Ordinary Differential Equations
下载PDF
导出
摘要 研究了含有一个参数的高阶线性常微分方程的有界非振动解零点个数问题,将二阶线性常微分方程中有界非振动解零点个数问题的结论推广到高阶线性常微分方程情况上。 This paper is concerned with the problem of counting the number of zeros of bounded nonoscillatory solutions to higher-order liner ordinary differential equations,involving a parameter.The results for the second-order case is still valid for the higher-order liner ordinary differential equatione case.
出处 《河南科技大学学报(自然科学版)》 CAS 北大核心 2010年第1期85-87,共3页 Journal of Henan University of Science And Technology:Natural Science
基金 国家自然科学基金项目(10171010) 教育部科学技术研究重点项目(01061)
关键词 非振动解 解的零点 奇异特征值 Nonoscillatory solutions Zero of solution Singular eigenvalue problem
  • 相关文献

参考文献7

  • 1Kusano T, Naito Y. Oscillation and Nonoscillation Criteria for Second Order Qusilinear Differential Equations [ J ]. Acta Math, Hungar 1997,76 : 81 - 99.
  • 2Kusano T, Naito M ,Tanigawa T. Second Order Half-Linear Eigenvalue Problems [ J ]. Fukuoka Univ Sci Rep, 1997,27:1 -7.
  • 3Elias U, Pinkus A. Nonoseillation Eigenvalue Problems for a Class of Ordinary Differential Equations [ J ]. Proc R Soc Edinb,2002, A 132 : 1333 - 1359.
  • 4李培峦,张翠,吴玉森.Banach空间中的一类二阶n点边值问题[J].河南科技大学学报(自然科学版),2009,30(4):90-92. 被引量:2
  • 5Posly O. Oscillation Criteria for Half-linear Second Order Differential Equations[ J]. Hiroshima Math, 1998,28:507 -521.
  • 6Kusano T, Natio M. Singular Eigenvalue Problems for Second Order Linear Ordinary Differential Equations [ J ]. Arch Math (Brno) ,1998,34:59 -72.
  • 7Manabu Naito. On the Number of,Zeros of Nonoscillatory Solutions to Higher-order Liner Ordinary Differential Equations [ J ]. Monatsh Math,2002,136:237 - 242.

二级参考文献9

  • 1Lakshmikantham V, Leela S. Nonlinear Differential Equations in Abstract Spaces [ M ]. Oxford:Pergamon Press, 1981.
  • 2Demling K. Ordinary Differential Equations in Banach Spaces[ M]. Berlin: Springer, 1977.
  • 3Guo Dajun, Lakshmikantham V, Lin X. Nonlinear Integral Equations in Abstract Spaces [ M ]. Dordrecht : Kluwer Academic, 1996.
  • 4Guo Dajun ,Lakshmikantham V. Nonlinear Problems in Abstract Cones[ M ]. New York :Academic Press, 1988.
  • 5Liu Yansheng. Boundary Value Problems for Second Order Differential Equations on Unbounded Domains in a Banach Space[ J]. Appl Math Compu,2003,(135) :569 -584.
  • 6Deimling K. Nonlinear Functional Analysis[ M ]. Berlin : Springer, 1985.
  • 7郭大钧.非线性泛函分析[M].济南:山东科学技术出版社.1989.
  • 8Guo Dajun, Lakshmikantham V. Nonlinear Problems in Abstract Cones[ M ]. New York:Academic Press, 1988.
  • 9余建辉.二阶多点边值问题正解的存在性[J].福州大学学报(自然科学版),2002,30(4):438-441. 被引量:4

共引文献1

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部