摘要
该文研究了二阶齐次线性微分方程f″+Aepf′+BeQf=0的解的增长性,其中P,Q为次数不同的多项式,A,B为级分别小于eP,eQ的级的整函数.对于上述方程的大部分解。
In this paper we investigate the growth of solutions of second order homogeneous linear differential equations f″+Ae pf′+Be Qf=0 where P,Q are polynomials with different degrees,A,B are entire functions,their orders are less than orders of e p,e Q respectively.For the greater part of solutions of above equations,we obtain precise estimate to the growth of these solutions
出处
《江西师范大学学报(自然科学版)》
CAS
1998年第4期291-294,共4页
Journal of Jiangxi Normal University(Natural Science Edition)
基金
国家自然科学基金
关键词
线性
微分方程
整函数
解
增长性
值分布
homogeneous linear differential equation,entire function,hyper order