期刊文献+

具有Leslie-Gower反应的离散捕食—食饵系统的稳定性和分支分析 被引量:2

Stability and Bifurcation in a Discrete Predator-Prey System with Leslie-Gower Type
下载PDF
导出
摘要 研究了一类用向前欧拉法获得的具有Leslie-Gower反应类型的离散捕食系统的动力学行为.利用Jury判据,探讨了系统的渐进稳定性;利用分支理论和中心流型定理,证明了系统在一定条件下存在flip分支. The dynamic behavior of a discrete predator - prey system obtained by forward Euler method with Leslie - Cower type is investigated. The Criterion Jury is adopted to analyze the asymptotical stability. The center manifold theory and bifurcation theorem can prove that the flip bifurcation exists in a certain condition.
作者 张莉敏
出处 《四川文理学院学报》 2010年第2期13-15,共3页 Sichuan University of Arts and Science Journal
关键词 向前欧拉法 离散捕食-食饵系统 flip分支 Forward Euler method discrete predator - prey system flip bifurcation
  • 相关文献

参考文献9

  • 1Beddington J R, Free C A, Lawton J H. Dynamic complexity in predator-prey models framed in difference equations[J].Nature, 1975,255:58-60.
  • 2Huo H F, IA W T. Stable periodic solution of the discrete periodic Leslie- Gower predator-prey model [ J ]. Math Comput Model, 2004,40:261 -9.
  • 3Yang X. Uniform persistence and periodic solutions for a discrete predator -prey system with delays [ J]. J Math Anal Appl, 2006, 316:161-77.
  • 4Liu X 1, Xiao D M. Complex dynamic behaviors of a discrete-time predator-prey system[ J]. Chaos. Solitons & Fractals, 2007, 32 : 80 - 94.
  • 5Agiza H N, Elabbssy E M, E L - MetwaUy H, Elsadany A A. Chaotic dynamics of a discrete prey - predator model with Holling type//[J]. Nonlinear Anal Real World Appl, 2009,10:116 -29.
  • 6Zhang Y, Zhang Q L, Zhao L C, Yang C Y. Dynamical behavior and chaos control in a discrete function response model[ J ]. Chaos, Solltons & Fractals, 2007,34:1318-27.
  • 7Jing Z J, Yang J P. Bifurcation and chaos in discrete -time predator-prey system[ J]. Chaos, Solitons & Fractals, 2006,27 : 259 - 77.
  • 8Wiggins S. Introduction to applied nonlinear dynamical systems and chaos[ M ]. Berlin; Springer- Verlag; 1990.
  • 9张超锋,张莉敏.具有阶段结构和自食作用捕食系统的持久生存[J].四川文理学院学报,2009,19(2):4-6. 被引量:2

二级参考文献6

  • 1李金仙.一类具有阶段结构捕食系统的永久持续生存[J].山西师范大学学报(自然科学版),2006,20(4):34-37. 被引量:1
  • 2苏华,戴斌祥.一类具有阶段结构的HollingⅡ型捕食系统的一致持久性[J].经济数学,2006,23(3):293-296. 被引量:4
  • 3Liu SQ, Zhang JH. Coexistence and stability of predator- prey model with Beddington [ J ]. DeAngelis functional respon - se and stage structure ,2008 (342) :446 - 460.
  • 4Cui J, Song X. Permanence of predator - prey system with stage structure [ J ]. Discrete and Continuous Dynamical Systems, 2004 (3) : 547 - 554.
  • 5Kaewmanee C, Tang IM. Cannibalism in an age- structured predator - prey system [ J ]. Ecol Mod, 2003 ( 167 ) : 213 - 220.
  • 6Claessen D, De R, Persson Am. Population dynamic theory of size - dependent cannibalism [ J ]. Proc R Soc, 2004 (271) :333 -340.

共引文献1

同被引文献16

  • 1Chen FD.Permanence and global attractivity of a discrete multispeciesLotka Volterra competition predator prey systems. Appl MathComput . 2006
  • 2Xiao Y,Cao JD,Lin M.Discrete-time analogues of predator preymodels with monotonic or nonmonotonic functional responses. Nonlinear Analysis Real World Applications . 2007
  • 3Celik C,,Duman O.Allee effect in a discrete-time predator-prey system. Chaos,Solitons&Fractals . 2009
  • 4Agiza HN,Elabbssy EM.Chaotic dynamics of a discrete prey-predatormodel with Holling type II. Nonlinear Analysis Real World Applications . 2009
  • 5Jing ZJ,,Yang JP.Bifurcation and chaos in discrete-time predator-preysystem. Chaos,Solitons&Fractals . 2006
  • 6Francisco JS.Self-limitation in a discrete predator prey model. MathComput Model . 2008
  • 7Chen XX.Periodicity in a nonlinear discrete predator prey system withstate dependent delays. Nonlinear Analysis Real World Applications . 2007
  • 8Yang X.Uniform persistence and periodic solutions for a discretepredator prey system with delays. Journal of Mathematical Analysis and Applications . 2006
  • 9Fang N,Cheng X.Permanence of a discrete multispecies Lotka Volterracompetition predator prey system with delays. Nonlinear Anal RealWorld Appl . 2008
  • 10Beddington JR,Free CA,Lawton JH.Dynamic complexity in predator-prey models framed in difference equations. Nature . 1975

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部