BAYESIAN IMAGE SUPERRESOLUTION AND HIDDEN VARIABLE MODELING
BAYESIAN IMAGE SUPERRESOLUTION AND HIDDEN VARIABLE MODELING
摘要
Superresolution is an image processing technique that estimates an original high-resolutionimage from its low-resolution and degraded observations.In superresolution tasks,there have beenproblems regarding the computational cost for the estimation of high-dimensional variables.Theseproblems are now being overcome by the recent development of fast computers and the developmentof powerful computational techniques such as variational Bayesian approximation.This paper reviewsa Bayesian treatment of the superresolution problem and presents its extensions based on hierarchicalmodeling by employing hidden variables.
参考文献31
-
1S. Borman and R. L. Stevenson, Spatial resolution enhancement of low-resolution image sequences: A comprehensive review with directions for future research, Technical Report, Dept. of Electrical Engineering, University of Notre Dame, 1998.
-
2S. C. Park, M. K. Park, and M. G. Kang, Super-resolution image reconstruction: A technical overview, IEEE Signal Process. Mag., 2003, 20(3): 21-36.
-
3S. Farsiu, D. Robinson, M. Elad, and P. Milanfar, Advances and challenges in super-resolution, Int. J. Imag. Syst. Tech., 2004, 14(2): 47-57.
-
4A. K. Katsaggelos, R. Molina, and J. Mateos, Super Resolution of Images and Video, Morgan Claypool, San Rafael, CA, 2007.
-
5W. T. Freeman, T. R. Jones, and E. C. Pasztor, Example-based super-resolution, IEEE Comput. Graphics Appl., 2002, 22(2): 56-65.
-
6M. E. Tipping and C. M. Bishop, Bayesian image super-resolution, in Advances in Neural Informa- tion Processing Systems (NIPS) 15 (eds. by S. Becker, S. Thrun, and K. Obermayer), MIT Press, Cambridge, MA, 2003, 1279-1286.
-
7A. Kanemura, S. Maeda, and S. Ishii, Edge-preserving Bayesian image superresolution based on compound Markov random fields, in Proc. International Conference on Artificial Neural Networks (ICANN) (ed. by J. Marques de Sa), LNCS 4669, Springer, 2007, II-611-620,.
-
8A. Kanemura, S. Maeda, and S. Ishii, Image superresolution under spatially structured noise, Proc. IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 2007, 279-284.
-
9W. Fukuda, S. Maeda, A. Kanemura, and S. Ishii, Bayesian image superresolution under moving occlusion (in Japanese), in IEICE Technical Report, 2008, 107(542): 237-242.
-
10R. Y. Tsai and T. S. Huang, Multiframe image restoration and registration, in Advances in Compurer Vision and Image Processing, JAI Press, Greenwich, CT, 1984, 1: 317-339.
-
1Mall Welborn.DS—UWB:高速率应用的无线连接[J].电子设计技术 EDN CHINA,2005,12(9):155-155.
-
2Matt Welborn.DS-UWB:高速率应用的无线连接[J].电子与电脑,2005(5):91-94.
-
3A. Fanrina, F.Prodi & F. Vinelli(Alenia. Una Azienda Finmeccanica. Radar & C2 DivisionVia Tiburtina km. 12.400. 00131 Roma, Italy).Application of Superresolution Techniques to Radar Imaging[J].Journal of Systems Engineering and Electronics,1994,5(1):1-14. 被引量:4
-
4顾洎广.用激光传输高清晰度图像[J].电子世界,2003(8):8-8.
-
5Matt Welborn.DS-UWB:高速率应用的无线连接[J].电子技术应用,2005,31(6):68-69.
-
6王双成,冷翠平,刘凤霞.基于局部解释能力的贝叶斯网络隐藏变量学习[J].小型微型计算机系统,2009,30(9):1811-1814. 被引量:1
-
7陈颖莹.Altera新Cyclone IV FPGA抢占ASSP市场 满足了大批量、低成本串行协议解决方案需求[J].电子技术应用,2009,35(12):7-7.
-
8肖志鹏.D1画质是DVR发展的必然趋势[J].A&S(安防工程商),2005(10):154-156.
-
9寂寞的刺猬.隐藏变量的危害——2s_Blog突现注入漏洞[J].黑客防线,2006(8):8-10.
-
10曹超,马瑞,朱樟明,梁宇华,叶谦.高精度SARADC非理想因素分析及校准方法[J].西安电子科技大学学报,2015,42(6):61-65. 被引量:3