期刊文献+

基于决策偏好的多目标粒子群算法及其应用 被引量:18

Multi-objective particle swarm optimization based on decision preferences and its application
下载PDF
导出
摘要 针对传统多目标粒子群算法在解决复杂多目标优化问题上的不足,提出一种基于决策偏好的交互式多目标粒子群算法。该算法考虑决策者的正偏好和负偏好对粒子的引导作用,首先计算外部种群粒子与双极偏好点的相对贴近度,并进行排序;根据排序结果进行外部种群管理和全局最优解更新;使用δ-邻域值控制Pareto解集的分布性。在随机多目标库存控制应用中,证明了该算法对复杂应用问题求解的有效性,性能对比结果表明,该算法的收敛性、多样性和运算时间优于基于参照点的第二代非支配解排序遗传算法。 To overcome shortcomings of traditional multi-objective particle swarm methods in dealing with complicated multi-objective optimization problems,an interactive Multi-Objective Particle Swarm Optimization(MOPSO) algorithm was presented based on decision preferences.This algorithm considered the guiding roles for particles by the bipolar preferences of decision makers.The nearness degrees of out-archives particles to bipolar preferences were calculated and sequenced according to Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS) method.Then,out-archives management and global-best solution update were implemented according to the sorting results,and the spreading of Pareto solution set was controlled by the-neighborhood.By applying the algorithm in stochastic multiple-target inventory control,it was proved to be effective in dealing with complicated application problems.Also,the comparison result showed that this algorithm outperformed Reference Non-dominated Sorting Genetic Algorithms II(R-NSGA-II) in convergence,diversity,and computing time.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2010年第1期140-148,共9页 Computer Integrated Manufacturing Systems
基金 浙江省重大科技专项资助项目(2009C11026) 浙江省自然科学基金资助项目(R2080100) 浙江省新苗人才计划资助项目(2008R40G2020009)~~
关键词 粒子群算法 多目标优化 决策偏好 库存控制 particle swarm method multi-objective optimization decision preferences inventory control
  • 相关文献

参考文献24

  • 1DEB K. Multi-objective optimization using evolutionary algorithms[M]. Chichester, UK:Wiley, 2001.
  • 2COELLO C, VAN VELDHUIZEN D A, LAMONNT G. Evolutionary algorithms for solving multi-objective problems[M], Boston, Mass. , USA: Kluwer Academic Publishers, 2002.
  • 3COELLO C, SALZZAR M. MOPSO:a proposal for multiple objective particle swarm optimization[C]//Proceedings of 2002 Congress on Evolutionary Computation, Washington, D. C. , USA: IEEE, 2002:1051-1056.
  • 4LI Xiaodong. A non-dominated sorting particle swarm optimizer for multiobjective optimization[J]. Lecture Notes in Computer Science, 2003,3102 : 37-48.
  • 5DEB K, AGRAWAL S, PRATAP A, et al. A fast and elitist multi-objective genetic algorithm: NSGA- II [J]. IEEE Transactions on Evolutionary Computation, 2002,6 (2) : 182-197.
  • 6RAQUEL C R, NAVAL JR P C. An effective use of crowding distance in multiobjective particle swarm optimization[C]//Proceedings of 2005 Genetic and Evolutionary Computation Conference, New York, N. Y. , USA : ACM Press, 2005 : 257-264.
  • 7DURILLO J J, NEBRO A J, COELLO C, et al. Multi-objective particle swarm: optimizers an experimental comparison[J].Lecture Notes in Computer Science, 2009,5467 :495-509.
  • 8李中凯,谭建荣,冯毅雄,方辉.基于拥挤距离排序的多目标粒子群优化算法及其应用[J].计算机集成制造系统,2008,14(7):1329-1336. 被引量:40
  • 9ABIDO M A. Multiobjective particle swarm optimization for environmental/economic dispatch problem[J]. Electric Power System Reasearch,2009,79(7) :1105-1113.
  • 10徐杰,黄德先.基于混合粒子群算法的多目标车辆路径研究[J].计算机集成制造系统,2007,13(3):573-579. 被引量:31

二级参考文献53

共引文献84

同被引文献246

引证文献18

二级引证文献110

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部