期刊文献+

基于空间覆盖的半监督特征选择方法 被引量:2

Spatial overlapping based semi-supervised feature selection
下载PDF
导出
摘要 提出一种新颖的基于空间覆盖的半监督特征选择方法。该算法同时利用已标签数据与未标签数据进行特征选择,各特征的相关性大小由其在不同簇中的覆盖程度衡量。在公共数据集和毒性数据集上的实验表明,该方法在改善学习精度上有很好的应用前景。 A novel Spatial Overlapping based Semi-supervised Feature Selection (SOS-FS) method is proposed.It uses both labeled and unlabeled data in feature selection,feature's relevance is measured by its overlapping ratio among different clusters. Experimental results carried out on some public datasets collected from the UCI machine learning repository and predictive toxicology domain show that SOS-FS has a promising performance on the improvement of the learning accuracy.
作者 陈红 郭躬德
出处 《计算机工程与应用》 CSCD 北大核心 2010年第8期130-132,140,共4页 Computer Engineering and Applications
基金 福建省自然科学基金 Grant No.2007J0016~~
关键词 空间覆盖 半监督 特征选择 spatial overlapping semi-supervised feature selection
  • 相关文献

参考文献11

  • 1Handl J,Knowles J.Feature subset selection in unsupervised learning via muhiobjective optimization[J].Int'l J Computational Intelligence Research,2006,2(3) :217-238.
  • 2Dash M,Liu H.Handling large unsupervised data via dimensionality reduction[C]//Proceedings of 1999 SIGMOD Research Issues in Data Mining and Knowledge Discovery(DMKD-99) Workshop, 1999.
  • 3Liu H,Yu L.Towards integrating feature selection algorithms for classification and clustering[J].IEEE Transactions on Knowledge and Data Engineering,2005,17(3 ) : 1-12.
  • 4Zhao Z,Liu H.Semi-supervised feature selection via spectral analysis[C]//SIAM International Conference on Data Mining,SDM 2007, 2007.
  • 5EU FP5 Quality of Life DEMETRA QLTR-2001-00691:Development of environmental modules for evaluation of toxicity of pesticide residues in agriculture.
  • 6Huang Y,Guo G,Neagu D.A partial coverage based approach to classification[C]//Proc of the 19th IEEE International Conference on Tools with Artificial Intelligence,ICTAI 2007,2007,1:275-280.
  • 7Nakatani Y,Zhu K,Uehara K.Semi-supendsed learning using feature selection based on maximum density subgraphs[J].Systems and Computers in Japan,2007,38(9):32-43.
  • 8Wang H,Duntsch I,Bell D.Data reduction based on hyper relations[C]//Proc of KDD, 1998 : 349-353.
  • 9Huang Y,Guo G,Chen H,et al.Dynamic partial coverage based feature selection method[C]//Proc of FSKD,2008.
  • 10UCI Repository of Machine Learning Databases[EB/OL].http://www. ics.uci.edu/-mlearn/MLRository.html.

同被引文献26

  • 1张丽新,王家钦,赵雁南,杨泽红.机器学习中的特征选择[J].计算机科学,2004,31(11):180-184. 被引量:18
  • 2Lan H Witten, Eibe Frank. Data mining practical machine learning ools and techniques[ M]. 2nd Edition, San Francisco: Morgan Kaufmann, 2005.
  • 3UCI repository of machine learning databases [ EB/OL]. http:// www. ics. uci. eu/-mlearn/MLRository. html. 2008.
  • 4ndl J,Knowles J. Feature subset selection in unsupervised learning via multiobjective optimization [ J ]. Int'l J. Computational Intelligence Research, 2006,2(3) :21%238.
  • 5Dash M, Liu H. Handling large unsupervised data via dimensionality reduction[C]. In: Proceedings of 1999 SIGMOD Research Issues in Data Mining and Knowledge Discovery. DMKD-99, Work-shop, 1999.
  • 6Yvan Saeys, Thomas Abeel,Yves Van de Peer. Robust feature selection using ensemble feature selection techniques[M]. Machine Learning and Knowledge Discovery in Databases, vol 5212. Springer Berlin / Heidelberg, 2008,313-325.
  • 7Hand D, Marmila H, Smyth P. Principles of data mining [ M ]. The MIT Press, 2001.
  • 8Pierre-Emmanuel Jouve, Nicolas Nicoloyannis. A filter feature selection method for clustering[ M]. Foundations of Intelligent Systerns,vol 3488. Springer Berlin / Heidelberg, 2005,583-593.
  • 9Ren Jiang-tao, Qiu Zheng-yuan, Wei Fan,et al. Forward semi-supervised feature selection[ M]. Advances in Knowledge Discovery and Data Mining, voi 5012. Springer Berlin / Heidelberg, 2008, 970-976.
  • 10Marina Skuriehina, Robert P W Duin. Combining feature subsets in feature selection [ M]. Multiple Classifier Systems, vol 3541. Springer Berlin / Heidelberg, 2005,165-175.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部