期刊文献+

基于秩1约束的三维重建方法 被引量:4

A 3D Reconstruction Method Based on Rank 1
下载PDF
导出
摘要 假设相机为正投影模型,提出了一种基于秩1约束的三维重建方法,该方法并不是直接求解空间结构点和投影矩阵,而是求解空间结构点的深度及投影矩阵。本文利用空间结构点可以由第1幅图像点及深度构成的特性,构造了一个秩为1的矩阵,利用该矩阵求取空间结构点的深度,最后完成三维重建。模拟实验和真实实验数据结果表明,该重建方法具有较高的重建精度。 Under orthographic projection, a 3D reconstruction method based on rank 1 matrix containing all the image points in all views is presented in the paper. In the method, the unknowns are the 3D motion and relative depths of the set of points, not their 3D positions. The coordinates of the points along the camera plane are given by the first image positions. The knowledge of the coordinates along the camera plane enables us to solve the projective reconstruction problem by the factorizing the rank 1 matrix. Experiments with both simulated and real data show that the method has high precistion in 3D reconstruction.
出处 《信号处理》 CSCD 北大核心 2010年第1期28-31,共4页 Journal of Signal Processing
基金 国家自然科学基金资助项目(60805016) 中国博士后科学基金资助项目(20080430201) 高等学校博士学科点专项科研基金新教师基金课题(200807181007).
关键词 三维重建 正投影 秩1 3D reconstruction orthographic projection rank 1
  • 相关文献

参考文献10

  • 1A. Tang,T. Ng, Y. Hung, C. Leung. Projective reconstruction from line-correspondences in multiple uncalibrated images [ J ]. Pattern Recognition, 2006,39 ( 1 ) : 889-896.
  • 2Q. Ke, T. Kanade. Quasiconvex Optimization for Robust Geometric Reconstruction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007,29 ( 10 ) : 1834-1847.
  • 3J. Yan, M. Pollefeys. A Factorization-Based Approach for Articulated Nonrigid Shape, Motion and Kinematic Chain Recovery From Video [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30 ( 5 ) : 865- 877.
  • 4S. Negahdaripour. Epipolar Geometry of Opti-Acoustic Stereo Imaging[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2007,29 ( 10 ) : 1776-1788.
  • 5R. Vidal, R. Hartley. Three-View Muhibody Structure from Motion[ J], IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(2) :214-227.
  • 6Y. Ma, K. Huang, R. Vidal, J. Kosecka, S. Sastry. Rank Conditions on the Multiple-View Matrix [ J ]. International Journal of Computer Vision, 2004,59 ( 2 ) : 115-137.
  • 7C. Tomasi and T. Kanade. Shape and motion from image streams under orthography : a factorization method [ J ]. International Journal of Computer Vision, 1992,9 ( 2 ) : 137- 154.
  • 8P. Aguiar, and J. Moura. Factorization as a Rank 1 Problem [ A]. Conference on Computer Vision and Pattern Recognition,Colorado,pp. 178-184,June 1999.
  • 9S. Liu,C. Wu, L. Tang and J. Jia. An iterative factorization method based on rank I for projective structure and motion [J]. The IEICE Transactions on Information and Systems, 2005 ,E88-D(9) :2183-2188.
  • 10R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision[ M]. Cambridge Univ. Press, Cambridge, UK ,2000.

同被引文献42

  • 1刘侍刚,吴成柯,李良福,宁纪锋.基于1维子空间线性迭代射影重建[J].电子学报,2007,35(4):692-696. 被引量:6
  • 2WANG Guanghui, WU J Q M. The quasi-perspective model: geometric properties and 3D reconstruction[J]. Pattern Recognition, 2010, 43(5) : 1932-1942.
  • 3PENG Yali, LIU Shigang, LIU Fang. Projective reconstruction with occlusions[J]. Opto-Eleetronics Review, 2010, 18(2) :14-18.
  • 4TRIGGS B, MCLAUCHLAN P, HARTLEY R I, et al Bundle adjustment: a modem synthesis [C] // Proceedings of International Workshop on Vision Algorithms Berlin, Germany: Springer Verlag, 2005: 298-372.
  • 5BARTOLI A. A unified framework for quasi-linear bundle adjustment [ C]//Proceeding of 16th International Conference on Pattern Recognition. Los Alamitos, CA, USA: IEEE Computer Society, 2002: 560-563.
  • 6MICHOT J, BARTOLI A, GASPARD F, et al. Algebraic line search for bundle adjustment[C]//Proceedings of the Ninth British Machine Vision. Berlin, Germany: Springer Verlag, 2009 : 1-8.
  • 7MAHAMUD S, HEBERT M, OMORI Y, et al. Provably-convergent iterative methods for projective structure from motion [C]//IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA, USA: IEEE Computer Society, 2001 : 1018-1025.
  • 8MARQUES M, CCNFEIRA J. Estimating 3D shape from degenerate sequences with missing data [J].Computer Vision and Image Understanding, 2009, 113(2).261-272.
  • 9JULIA C, SAPPA A. An iterative muhiresolution scheme for SFM with missing data: single and multiple object scenes [J]. Image and Vision Computing, 2010, 28(1) : 164-176.
  • 10PENG Y, LIU S, LIU F. Projective reconstruction with occlusions [ J ], Opto-Electronics Review, 2010, 18 (2) : 14-18.

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部