期刊文献+

联合非高斯性和非线性自相关的有噪盲源分离算法 被引量:2

Blind source separation for noisy mixtures with non-Gaussianity and nonlinear autocorrelation
下载PDF
导出
摘要 现有的盲源分离算法往往利用信号某一方面的统计特性来分离信号,例如:利用信号的非高斯特性,或者利用信号的时序特性。在实际应用中,信号往往是具有这两种特性信号的混合,采用信号某一方面的特性往往不能够成功的分离出信号。现有的盲源分离算法往往不考虑噪声的影响,但在实际应用中,噪声的影响是不可避免的。当源信号具有非高斯性和非线性自相关特性时,提出了联合非高斯性和非线性自相关特性的有噪盲源分离算法。计算机仿真表明了提出算法的有效性,和现有的基于非高斯性和非线性自相关特性的有噪盲源分离算法相比,提出算法具有更好的信号分离性能。 One often solve the BSS problem by using the statistical properties of original sources, e. g. , non-Gaussianity or time- structure information. Nevertheless, real-life mixtures are likely to contain both non-Gaussianity and time-structure information, rendering the algorithm using only one statistical property fail. The BSS algorithms are often limited to noise-free mixtures,which are not realistic. Therefore ,this paper address the separation of the noisy model based on non-Gaussianity and nonlinear autocorrelation of sources. An ob- jective function which based on the two statistical characteristics of sources is proposed. Maximizing this objective function, we present a blind source separation algorithm for noisy mixtures. The validity of the proposed algorithm is demonstrated by computer simulation. Moreover,comparisons with the existing algorithm for noisy mixtures based on non-Gaussianity and nonlinear autocorrelation indicate the better performance.
出处 《信号处理》 CSCD 北大核心 2010年第1期141-145,共5页 Journal of Signal Processing
关键词 盲源分离 非高斯性 非线性自相关 高斯矩 Blind source separation Non-Gaussianity Nonlinear autocorrelation Gaussian moments
  • 相关文献

参考文献14

  • 1A. Cichocki, S. Amari. Adaptive Blind Signal and Image Processing [ M]. John Wiley & Sons Ltd,England,2002.
  • 2A. Hyvarinen,J. Karhunen,E. Oja. Independent Component Analysis [ M]. John Wiley & Sons Ltd,New York,2001.
  • 3A. Bell ,T. Sejnowski. An irfformation-maximization approach to blind separation and blind deconvolution [ J ]. Neural Computation, 1995,7 (6) : 1129-1159.
  • 4J.-F. Cardoso, B. H. Laheld. Equivariant adaptive source separation [ J]. IEEE Transactions on Signal Processing, 1996,44(12) ,3017-3030.
  • 5A. Hyvarinen. Fast and robust fixed-point algorithm for independent component analysis [ J ]. IEEE Transaction on Neural Networks, 1999,10 (3) ,626-634.
  • 6Z. Shi, H. Tang, Y. Tang. A new fixed-point algorithm for independent component analysis [ J ]. Neurocomputing, 2004,56:467-473.
  • 7A. Hyvarinen. FastICA for noisy data using Gaussian moments [ C]. Proceeding of the International Symposium on Circuits and Systems, Orlando, FL, 1999,57-61.
  • 8A- Hyvarinen. Gaussian moments for noisy independent component analysis [ J]. IEEE Signal Process Lett, 1999, 6(6) :145-147.
  • 9A. Hyvarinen. Complexity pursuit: separating interesting components from time-series [ J ]. Neural Computation, 2001,13 (4) :883-898.
  • 10Z. Shi, H. Tang, Y. Tang. A new fixed-point algorithm for complexity pursuit [ J]. Neurocomputing, 2004,61 : 461- 469.

同被引文献15

  • 1梁志国,耿书雅.基于傅里叶变换的正弦信号源波形失真评价方法[J].计量学报,2004,25(4):357-361. 被引量:19
  • 2A Hyvarinen,J Karhunen,oja Erkki著,周宗潭,等译.独立成分分析[M].北京:电子工业出版社,2007.
  • 3A Hyvarinen, P Ramkumar, L Parkkonen, R Haft. Independent component analysis of short - time Fourier transforms for spontane- ous EEG/MEG analysis [ J ]. Neurolmage, 2010, 49 ( 1 ) : 257:271.
  • 4S C Douglas, A Cichocki, S Amari. A bias removal technique for blind source separation with noisy measurements [J].Electronics Letters, 1998,34(14) :1379 - 1380.
  • 5Yang Yumin. Independent Component Analysis for Noisy Time - dependent Processes Using AR Source Model[ J]. Journal of Com- putational Information Systems, 2012,8 (20) :8455 - 8462.
  • 6A Hyvarinen. The Fixed - Point Algorithm and Maximum Likeli- hood Estimation or Independent Component Analysis [ J ]. Neural processing letters, 1999,10 ( 1 ) : 1 - 5.
  • 7J Cao, N Murata, S Amari, A Cichocki. A robust approach to in-dependent component analysis of signals with high - level noise measurements [ J ]. IEEE Transactions on Neural Networks, 2003,14(3) :631 -645.
  • 8张朝柱,张健沛,孙晓东.基于curvelet变换和独立分量分析的含噪盲源分离[J].计算机应用,2008,28(5):1208-1210. 被引量:10
  • 9谭北海,谢胜利.基于源信号数目估计的欠定盲分离[J].电子与信息学报,2008,30(4):863-867. 被引量:26
  • 10王春田,魏巍,刘彦辉.基于独立分量分析的地震资料去噪技术[J].计算机仿真,2010,27(7):253-257. 被引量:1

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部