期刊文献+

OFDM系统中基于压缩传感理论的信道估计算法 被引量:4

Channel estimation algorithm based on compressed sensing for OFDM systems
下载PDF
导出
摘要 信道估计是OFDM系统中的一项关键技术,信道估计质量的好坏对整个系统的性能有重要的影响。传统的最小均方算法对稀疏信道进行估计时存在精确性差的缺陷。本文利用信道冲激响应的稀疏性,提出了一种基于近似l_0范数的信道估计算法。该算法用三种函数逼近l_0范数,应用梯度下降法和梯度投影算法获得代价函数的最优解,从而得到信道的最稀疏解。仿真实验结果表明:在相同条件下,与基于l_1范数的信道估计算法比较,本文算法的收敛速度快,估计值信噪比高,目均方误差小。 Channel estimation for orthogonal frequency division multiplexing (OFDM) is a crucial technology. The quality of channel estimation has vital impact on the overall system performance. The traditional channel based on linear minimum mean-squared error suffers low accuracy. Exploiting the sparsity of channel impulse response, a channel estimation algorithm based on approximately l0 norm is proposed. We use three functions to approximate l0 norm ,and get the optimal solution of the cost function by applying gradient descend and gradient projection algorithm, thus obtains the sparsest channel response. Simulated experiment results show that under the same conditions,compared with the channel estimation algorithm based on l1 norm, the proposed algorithm's convergence speed is faster, and the signal-to-noise ratio is higher.
出处 《信号处理》 CSCD 北大核心 2010年第1期157-160,共4页 Journal of Signal Processing
基金 国家自然科学基金(No.60772079)资助项目
关键词 OFDM 稀疏信道 压缩传感 l0范数 orthogonal frequency division multiplexing (OFDM) sparse channel compressed sensing l0 norm
  • 相关文献

参考文献8

  • 1Cotter S F, Rao B D. Sparse channel estimation via Matching fursuit with application to equalization. IEEE Transation on Communications,2002,50(3) :374-377.
  • 2Bajwa W U, Haupt J, Raz G, et al. Compressed Channel Sensing. Proc. 42^nd Annual Conference on Information Sciences and Systems. 2008,3:5-10.
  • 3Baraniuk R G. Compressive Sensing. IEEE Transation on Signal Processing Magazine ,2007,24 (4) : 118-121.
  • 4Taubock G, Hlawatsch F. A Compressed sensing technique for OFDM channel estimation in mobile environments:Exploiting Channel Sparsity for Reducing Pilots. IEEE International Conference on Acoustics, Speech and Signal Processing. 2008:2885-2888.
  • 5Donoho D L. Compressed sensing. IEEE Transactions on Information Theory,2006,52 (4) : 1289-1306.
  • 6Mohimani G. Hosein, Babaie-Zadeh Massoud. Fast Sparse Representation using Smoothed l0 Norm. IEEE Transaction on Signal Processing. 2007,46 (6) : 1 -1 2.
  • 7Saligrama Venkatesb. Deterministic Designs with Deterministic Guarantees: Toeplitz Compressed Sensing Matrices, Sequence Design and System Identification. Technology report, In : Boston University ,2008 : 1-32.
  • 8Candes E J, Romberg J. 11-MAGIC: Recovery of Sparse Signals via Convex Programming. Technology report, In: California Institute of Technology,2005 : 1-19.

同被引文献36

  • 1Bajwa W U, Haupt J, Sayeed A M, et al. Compressed channel sensing:A new approach to estimating sparse multipath channels[J]. Proceedings of the IEEE,2010,98(6):1058- 1077.
  • 2Raghavendra M R, Giridhar K. Improving channel estimation in OFDM systems for sparse multipath channels [ J ]. IEEE Signal Processing Letters, 2005, 12(1) : 52 - 55.
  • 3Cotter S F, Rao B D. Sparse channel estimation via matching pursuit with application to equalization[ J]. IEEE Transactions on Communications, 2002, 50(3): 374-377.
  • 4Do T T, Gan L, Nguye N, et al. Sparsity adaptive matching pursuit algorithm practical compressed sensing[C]//Proceedings of Asilomar Conference on Signals, System, and Computers. Pacific Grove, California: IEEE,2008 : 581 - 557.
  • 5W.Li and J.C.Preisig.Estimation of rapidly time-varyingsparse channels[J].IEEE J.Ocean.Eng.,2007,32(4):927-939.
  • 6C.Carbonelli,S.Vedantam,and U.Mitra.Sparsechannel estimation with zero tap detection[J].IEEETrans.Wireless Commun.,2007,6(5):1743-1753.
  • 7D.Donoho.Compressed sensing[J].IEEE Trans.Info.Theory,2006,52(4):1289-1306.
  • 8E.J.Candes,J.Romberg,and T.Tao.Robustuncertainty principles:exact signal recognition fromhighly incomplete frequency information[J],IEEETrans.Info.Theory,2006,52(2):489-509.
  • 9E.J.Candes and T.Tao.Near optimal signal recovery fromrandom projections:universal encoding strategies?[J],IEEE Trans.Info.Theory,2006,52(12):5406-5425.
  • 10Qi Chenhao,Wu Lenan.Digital broadcast channel esti-mation with compressive sensing[J].Journal of SoutheastUniversity(English Edition).2010,26(3):389-393.

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部