期刊文献+

有噪复杂度寻踪的新算法 被引量:2

A novel algorithm for noisy complexity pursuit
下载PDF
导出
摘要 复杂度寻踪是投影寻踪向时间序列数据,即具有时间结构信号的扩展。该方法是和具有时间依赖特性的源信号的盲分离和独立成分分析紧密联系的。在源信号是具有时间依赖特性和存在高斯噪声的情况下,现有的有噪复杂度寻踪算法没有给出自回归系数的估计方法,影响了算法的实际应用,提出了有噪复杂度寻踪的新算法,该算法给出了自回归系数的估计方法。对自然图像和人工信号的仿真表明了提出算法的有效性,和现有的盲源分离算法相比较,提出算法具有好的信号分离性能。 Complexity pursuit is an extension of projection pursuit to time series data and the method is closely related to blind separation of time-dependent source signals and independent component analysis (ICA).In this paper,we consider the estimation of the data model of ICA when Gaussian noise is present and the components are time dependent.The separation result is affected because existing blind source separation algorithms do not give the method to estimate the autoregressive coefficients.A novel algorithm for noisy complexity pursuit is proposed.The algorithm gives the method to estimate autoregressive coefficients.Computer stimulations with natural images and artificial signals indicate the validity of the proposed algorithm.Moreover,comparisons with existing blind source separation algorithms further show the better performance of the proposed algorithm.
出处 《信号处理》 CSCD 北大核心 2010年第2期314-320,共7页 Journal of Signal Processing
关键词 盲源分离 独立成分分析 复杂度寻踪 时间序列 Blind source separation Independent component analysis Complexity pursuit Time series
  • 相关文献

参考文献9

  • 1A. Cichocki, S. Amari. Adaptive Blind Signal and Image Processing [ M ]. John Wiley & Sons Ltd, England,2002.
  • 2A.K. Barros, A. Cichocki. Extraction of specific signals with temporal structure [ J ]. Neural Comput, 2001, 13 (9) : 1995-2003.
  • 3A. Hyvarinen. Complexity pursuit: separating interesting components from time-series [ J ]. Neural Computation, 2001,13 (4) : 883-898.
  • 4Yumin Yang, Chonghui Guo and Zunquan Xia. Independent component analysis for time-dependent processes using AR source model [ J ]. Neural Process Lett, 2008,27 : 227 -236.
  • 5A. Hyvarinen. Gaussian moments for noisy independent component analysis [ J ]. IEEE Signal Process. Lett, 1999,10 ( 3 ) :626-634.
  • 6A. Hyvarinen. Fast and robust fixed-pointed algorithms for independent component analysis [ J ]. IEEE Trans. Neural Networks, 1999,6 ( 6 ) : 145-147.
  • 7Z. Shi, C. Zhang. Gaussian moments for noisy complexity pursuit [ J ]. Neurocomput, 2006,69:917-921.
  • 8A. Hyvarinen, J. Karhunen, E. Oja. Independent Component Analysis [ M ]. John Wiley & Sons Ltd, New York, 2001.
  • 9A. Hyvarinen. FastICA for noisy data using Gaussian moments [ C ]. Proceeding of the International Symposium on Circuits and Systems, 1999,57-61.

同被引文献15

  • 1张小兵,马建仓,陈翠华,刘恒.基于最大信噪比的盲源分离算法[J].计算机仿真,2006,23(10):72-75. 被引量:27
  • 2黄启宏,王帅,刘钊.改进的基于独立成分分析的图像特征提取算法[J].光电工程,2007,34(1):121-125. 被引量:11
  • 3佘堃,蒲红梅,郑方伟,周明天.自适应多目独立成分分析[J].电子科技大学学报,2007,36(1):11-13. 被引量:4
  • 4Francis R Bach, Michael I Jordan. Kernel independent component analysis[J]. J of Machine Learning Research, 2002(3): 1-48.
  • 5Aapo Hyvarinen, Juha Karhunen, Erkki Oja. Independence component analysis[M]. New York: John Wiley & Sons Inc, 2001: 113-115.
  • 6Aapo Hyvarinen. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans on Neural Network, 1999, 10(3): 626-634.
  • 7Francis RB, Michael IJ. Kernel independentcomponent analysis [J]. Journal of Machine LearningResearch [ISSN 1532-4435],2003, 3: 1-48.
  • 8Aapo H, JuhaK,Erkki O. Independence componentanalysis [M]. New York: John Wiley & Sons, Inc.,2001.
  • 9Aapo H. Fast and robust fixed-point algorithms forindependent component analysis [J]. IEEE Trans-actions on Neural Network [ISSN 1045-9227], 1999,10(3): 626-634.
  • 10冯燕,何明一,宋江红,魏江.基于独立成分分析的高光谱图像数据降维及压缩[J].电子与信息学报,2007,29(12):2871-2875. 被引量:38

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部