期刊文献+

基于游程特征的文本图像识别方法 被引量:2

Document image recognition based on run feature
下载PDF
导出
摘要 提出了一种基于游程特征的中英文本图像识别方法,用游程统计特征提供的图像信息作为图像模式识别的描述特征,在此基础上利用神经网络来训练分类器。实验结果表明,该方法的识别精度较高,具有一定的容错能力。 This paper presents a method for document image recognition based on run feature.The image represented by run feature provides the description for image pattern recognition.Based on it,Neural Network learning architecture is employed to learn to recognize the instances of the object class.Experimental results show that the method achieves high recognition accuracy,and it is perfect for fault tolerant.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第7期194-196,共3页 Computer Engineering and Applications
关键词 图像识别 游程特征 倾斜度 image recognition run feature gradient
  • 相关文献

参考文献3

  • 1Theodoridis S,Koutroumbas K.Pattern recognition[M].3rd ed.Beijing: Pubhshing House of Electronics Industry,2006.
  • 2Natsev A,Rastogi R,Shim K.A similarity retrieval algorithmfor image databases[J].IEEE Transactions on Knowledge and Data Engineering,2004,16(3).
  • 3范立南,徐心和.基于不变矩特征和神经网络的图像模式模糊分类[J].东北大学学报(自然科学版),2004,25(8):738-741. 被引量:12

二级参考文献10

  • 1Wang B T, Sun J G. Relative moment and their applications to geometric in shape recognition[J]. Journal of Image and Graphics, 2001,6(3):296-300.
  • 2Christopher M. Neural networks for pattern recognition[M]. Oxford: Clarendon Press, 1997.165-191.
  • 3Sluzek A. Identification and inspection of 2D objects using new moment-based shape descriptors[J]. Pattern Recognition Letter, 1995,16(3):687-697.
  • 4Hu M K. Visual pattern recognition by moment invariants[J]. IRE Transactions on Information Theory, 1962,8(2):179-187.
  • 5Liao S X, Pawlak M. On image analysis by moments[J]. IEEE Trans Pattern Analysis and Machine Intelligence, 1996,18(3):254-266.
  • 6Zhang J G, Tan T N. Brief review of invariant texture analysis methods[J]. Pattern Recognition, 2002,35(3):735-747.
  • 7Gevers T, Smeulders A W. Combining color and shape invariant features for image retrieval[J]. IEEE Trans Image Process, 2000,9(1):102-119.
  • 8缪绍纲.数字图像处理[M].成都:西南交通大学出版社,2001..
  • 9王玉涛,苑玮琦,周建常,王师.混合神经网络在颗粒图像边缘检测中应用[J].东北大学学报(自然科学版),1999,20(2):126-129. 被引量:3
  • 10甘俊英,张有为.基于不变矩特征和神经网络的人脸识别模型[J].计算机工程与应用,2002,38(7):53-56. 被引量:15

共引文献11

同被引文献21

  • 1谢顺平,都金康,王结臣.实现栅格图形和图像数据矢量化提取的游程轮廓追踪法[J].遥感学报,2004,8(5):465-470. 被引量:16
  • 2管继斌,明德烈.基于游程的倾斜表格图像的快速检测和校正[J].华中科技大学学报(自然科学版),2005,33(8):69-71. 被引量:7
  • 3王思佳,韩玮,陈克非.电子选举研究的挑战和进展[J].计算机工程,2006,32(15):7-9. 被引量:15
  • 4KOHNO T, STUBBLEFIELD A, RUBIN A D, et al. Analysis of an electronic voting system [ C]// Proceedings of the 2004 IEEE Sym- posium on Security and Privacy. Washington, DC: IEEE Computer Society, 2004:27-40.
  • 5RAMEL J Y, VINCENT N, EMPTOZ H. A structural representation for understanding line-drawing images [ J]. International Journal on Document Analysis and Recognition, 2000, 3(2): 58 -66.
  • 6QURESHI R J, RAMEL J Y, CARDOT H, et al. Combination of symbolic and statistical features for symbols recognition [ C]//Pro- ceedings of the 2007 IEEE International Conference on Signal Pro- cessing, Communications and Networking. Piscataway: IEEE, 2007:477-482.
  • 7LUQMAN M M, BROUARD T, RAMEL J Y. Graphic symbol recogni- tion using graph based signature and Bayesian network classifier [ C]// Proceedings of the 2009 10th International Conference on Document A- nalysis and Recognition. Piscataway: IEEE, 20139: 1325-1329.
  • 8BURGES C J C. A tutorial on support vector machines for pattern recognition [ J]. Data Mining and Knowledge Discovery, 1998, 2 (2): 121-1667.
  • 9CAO ZHIGUO, XIAO YANG, ZOU LAMEI. The application of run-length features in remote sensing classification combined with neural network and rough set [ C]//Proceedings of the 2007 IEEE International Conference on Granular Computing. Piscataway: IEEE, 2007:552-557.
  • 10Jain A K,Yu Bin,Automatic Text Location in Images and Video Frames[J].Pattern Recogintion,1998,31(12):2055-2076.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部