期刊文献+

肿瘤诊断中的特征基因提取 被引量:4

Gene selection for cancer diagnosis
下载PDF
导出
摘要 基于基因表达谱的特征基因提取方法已经成为当今研究肿瘤分子诊断的热点,但由于基因表达谱数据存在维数过高、样本量很小以及噪音很大等特点,使得肿瘤特征基因选择成为一件有挑战性的工作。提出了一种新的寻找特征基因的方法。首先基于区间间隔或覆盖比的方法来初步选出一些特征基因,而后删掉其中的冗余基因,达到以最少的基因数得到更高的分类准确率的目的。实验采用了3种肿瘤样本集来验证新算法的有效性。针对这3个样本集,只要2或3个特征基因就能得到100%的5-折交叉验证识别准确率。与其他肿瘤分类方法相比,显示了它的优越性。 Gene selection for cancer diagnosis method based on gene expression profile has become a hot topic in diagnosing cancer cells.However,the high dimensionality,small sample set and many noises of gene expression data make this task challenging.Thus,a novel gene selection method is provided.Firstly,use the ratio of interval gap or intersection cover to the whole span to select some discriminative genes,and then take use of an efficient procedure to cut off the redundancy genes in order to get higher accuracy and fewer genes.Finally,use three datasets to demonstrate the efficiency of the method.Using the 5-fold cross-validation method,only two or three genes can reach 100% accuracy in cancer classification.Compared with other cancer classification methods,it shows the competitive results.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第7期218-220,共3页 Computer Engineering and Applications
关键词 基因表达谱 特征基因 肿瘤诊断 支持向量机 gene expression feature gene cancer diagnosis support vector machine
  • 相关文献

参考文献9

  • 1Golub T R,Slonim D K,Tamayo P,et al.Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring[J].Science, 1999,286: 531-537.
  • 2Khan J,Wei J S,Ringner M,et al.Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks[J].Nature Medicine,2001:673-679.
  • 3Tibshirani R.Diagnosis of multiple cancer types by shrunken centroids of gene expression[J].PNAS, 2002,99 : 6567-6572.
  • 4Guyon I.Gene selection for cancer classification using support vector machines[J].Mach Learn, 2002,46: 389-422.
  • 5李建中,杨昆,高宏,骆吉洲,郭政.考虑样本不平衡的模型无关的基因选择方法[J].软件学报,2006,17(7):1485-1493. 被引量:24
  • 6Jourdan L,Alba E,Garca-Nieto J,et al.Gene selection in cancer classification using PSO/SVM and GA/SVM hybrid algorithms[C]// IEEE Congress on Evolutionary Computation(CEC-05),Singapore, Sep, 2007.
  • 7Vapnik V N.Statistical learning theory[M].New York:Wiley Interscience, 1998.
  • 8Cristianini N,Shawe-Taylor J.An Introduction to support vector machines[M].Cambridge,UK:Cambridge University Press,2000.
  • 9Chang Chihchung,Lin Chihjen.LIBSVM:A library for support vector machines[EB/OL].(2001 ).http://www.csie.ntu.edu.tw/-cjlin/libsvm.

二级参考文献19

  • 1Antoniadis A,Lambert-Lacroix S,Leblanc F.Effective dimension reduction methods for tumor classification using gene expression data.Bioinformatics,2003,19(5):563-570.
  • 2Dudoit S,Fridlyand J,Speed TP.Comparison of discrimination methods for the classification of tumors using gene expression data.Journal of the American Statistical Association,2002,97(457):77-87.
  • 3Lu Y,Hah J.Cancer classification using gene expression data.Information System,2003,28(4):243-268.
  • 4Xiong M,Fang X,Zhao J.Biomarker identification by feature wrappers.Genome Research,2001,11(11):1878-1887.
  • 5Guyon I,Weston J,Barnhill S,Vapnik V.Gene selection for cancer classification using support vector machines.Machine Learning,2002,46(3):389-422.
  • 6Ben-Dor A,Bruhn L,Friedman N,Nachma I.Tissue classification with gene expression profiles.In:Shamir R,Miyano S,Istrail S,Pevzner P,Waterman M,eds.Proc.of the 4th Annual Int'l Conf.on Computational Molecular Biology (Recomb).Tokyo:ACM,2000.
  • 7Lee KE,Sha N,Dougherty ER,Vannucci M,Mallick BK.Gene selection:A Bayesian variable selection approach.Bioinformatics,2003,19(1):90-97.
  • 8Hunter L,Taylor RC,Leach SM,Simon R.GEST:A gene expression search tool based on a novel Bayesian similarity metric.Bioinformatics,2001,17(Suppl.1):S115-S122.
  • 9Golub TR,Slonim DK,Tamayo P,Huard C,Gaasenbeek M,Mesirov JP,Coller H,Loh ML,Downing JR,Caligiuri MA,Bloomfield CD,Lander ES.Molecular classification of cancer:Class discovery and class prediction gene expression monitoring.Science,1999,286(5439):531-537.
  • 10Varma S,Simon R.Iterative class discovery and feature selection using minimal spannig trees.BMC Bioinformatics,2004,5:126.

共引文献23

同被引文献44

  • 1蒋望东,林士敏.基于贝叶斯网络工具箱的贝叶斯学习和推理[J].信息技术,2007,31(2):5-8. 被引量:24
  • 2阮晓钢,晁浩.肿瘤识别过程中特征基因的选取[J].控制工程,2007,14(4):373-375. 被引量:15
  • 3孙丽君,苗夺谦.基于粗糙集的基因表达数据分类研究[J].计算机工程,2007,33(16):183-185. 被引量:5
  • 4WANG Shu-lin. CHEN Huo-wang,LI Shu-tao,et al. Feature extraction from tumor gene expression profiles using DCT and DFT[C]//The 13th Portuese Conference on Artificial Intelligence :LNCS Vol 4874. Berlin :Springer, 2007: 485-496.
  • 5RAMASWAMY S,GOLUB T R. DNA microarrays in clinical oncology[J]. Journal of Clinical Oncology, 2002,20 (7) : 1932-1941.
  • 6LANDER E S,WEINBERG R A. Genomics journey to the center of biology[J]. Science ,2000,287(5459):1777-1782.
  • 7LANDER E S. Array of hope[J]. Nature Genetics, 1999,21 (S1) : 3-4.
  • 8PEARL J. Bayesian networks:a model of self-activated memory for evidential reasoning[C]//Proceedings of the 7th Conference of the Cognitive Science Society. Hillsdale ,NJ :Lawrence Erlbaum, 1985 : 329-334.
  • 9FRIEDMAN N, GEIGER D, GOLDSZMIDT M. Bayesian network classifiers [J]. Machine Learning, 1997,29: 131- 163.
  • 10RICHARD E. Learning bayesian networks[M]. Chicago,Illinois: Northeastern Illinois University, 2004.

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部