期刊文献+

体三维成像的螺旋扫描系统设计 被引量:5

Design of helical sweep system for volumetric three dimensional imaging
下载PDF
导出
摘要 提出了一种可产生稳定、均匀的投影空间,并由伺服电机驱动阶梯轴,带动屏旋转的双螺旋屏扫描系统,以实现体三维实时、高清晰成像。对比分析了扫描屏结构的成像特点,设计了屏结构的加工方案。采用半透明高强度的光敏树脂材料和缕空支撑墙体快速成型直接制造。通过Solidworks软件进行螺旋扫描屏的三维建模,并利用COSMOSWorks模块进行稳定运行的可行性分析。仿真结果显示,屏在600r/min恒速旋转时产生的最大位移数据为0.013mm,远小于人眼视觉可分辨的范围,可以满足成像空间设计需求。最后,结合现有的工程技术与工艺水平,建立了双螺旋屏扫描系统的物理平台。实验结果表明,该螺旋屏扫描系统形成的25cm×Ф50cm的柱型成像空间,可以呈现出清晰的体三维图像。 A sweep system with a double-helical screen whose rotation is driven by a motor is established to produce a steady and unique imaging space to realize real-time and high-resolution volumetric three-dimensional imaging.The imaging characteristics of projection spaces created by swept volume and static volume techniques are compared and analyzed,and the processing schemes of screen structure are designed.Using high strength photosensitive translucent resin materials and a supporting wall structure,the system is manufactured by rapid prototyping and directly digital manufacturing.Furthermore,the three dimensional model of helical sweep screen is established by Solidworks software and the dynamic testing is analyzed by the COSMOSWorks module.The simulation results show that the maximum displacement of screen rotating is 0.013 mm at 600 r/min,which is far less than the visual resolution range of realistic image synthesis,so the projection space based on the helical sweep screen can match imaging requirements.Finally,a system platform is built on the basis of the existing engineering and technological level.Experimental results indicate that the platform can produce a steady projection space(25 cm×Ф50 cm),and can supply excellent volumetric three-dimensional images.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2010年第1期183-189,共7页 Optics and Precision Engineering
基金 国家863高科技研究发展计划资助项目(No.2007AA01Z338) 中国博士后科学基金资助项目(No.20080441051) 江苏省博士后科研计划资助项目(No.0802014C) 南京航空航天大学创新基金资助项目(No.Y0602-031)
关键词 投影屏 成像系统 螺旋扫描系统 图像质量 三维模型 屏偏移 projection screen imaging system helical sweep system image quality three dimensional model screen displacement
  • 相关文献

参考文献10

二级参考文献24

共引文献26

同被引文献41

  • 1Mare L, Wijnand I. Visual discomfort and visual fatigue of stereoscopic displays: a review [J]. Journal of Imaging Science and Technology, 2009, 53 (3) : 1- 14.
  • 2Blundell B. Enhanced visualization: making space for 3-D images [M]. Hoboken, USA: John Wiley Sons, Inc, 2007.
  • 3Clifton III T E, Wefer F L. Direct volume display devices[J,]. IEEE Computer Graphics and Applications, 1993, 13(3): 57-65.
  • 4Soltan P, Lasher M, Dahlke W, et al. Improved second-generation 3-D volumetric display system [R]. ADA358303. San Diego: Space and Naval Warfare Systems Center, 1998 : 3-24.
  • 5Langhans K, brzecny D, Homann D, et al. Newportable FELIX 3D display[C]//Proc SPIE: Projection Displays IV. USA: SPIE, 1998: 204-216.
  • 6Favalora G E, Napoli J, Deirdre M Hall,et al. 100 million-voxel volumetric display [C]//Proc SPIE, Cockpit Displays IX, USA: SPIE, 2002: 300-312.
  • 7Geng J. Volumetric 3D display for radiation therapy planning [J]. Journal of Display Technology, 2008, 4(4) : 437-449.
  • 8Yucesoy V, Tunaoglu D, Kovachev M, et al. Design and implementation of a DMD based volumetric 3D display [ C ]//Proc 3DTV Conf. Piscataway, USA:Inst of Elec and Elee Eng Computer Society, 2008:29-31.
  • 9Dudley D, Duncan W, Slaughter J. Emerging digital micromirror device (DMD) applications [C]//Proc SPIE,MOEMS Display and Imaging Systems. USA: SPIE, 2003: 14-25.
  • 10Li Li, Gong Huajun, Shen Chunlin, et al. Novel volumetric three-dimensional display system [J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2008, 25(3):32-36.

引证文献5

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部