期刊文献+

改进的基于决策树的说话人在线聚类 被引量:1

Improved online speaker clustering based on decision tree
下载PDF
导出
摘要 针对采用传统的在线聚类方法时后续判决错误率较高的缺点,提出了一种改进的基于决策树的在线说话人聚类算法。通过构建一个决策树,增加判决分支,对语音段进行判决聚类,从而有效降低前期错误判决对后续聚类的影响。为了进一步提高算法效率,缩短运算时间,还给出了一种决策树剪枝方法,减少了不合理的判决分支。通过对广播新闻语料进行的说话人聚类实验表明,相比传统的层次聚类算法,新算法的平均类纯度和说话人纯度分别提高了0.9%和1.1%,计算时间减少了57%。实验结果还表明,相比手工标注说话人信息,将该算法的聚类结果应用于说话人自适应可降低系统的误识率。 Speaker clustering is a key component in many speech processing applications.To solve the problem of error propagating in the posterior clustering caused by the traditional online clustering,an improved online speaker clustering algorithm based on a decision tree is proposed.Unlike typical online clustering approaches,the proposed method constructs a decision tree to increase branches and to distinguish an audio segment clustering to reduce effectively the effect of error distinguishing on the posterior clustering.To shorten the operation time,a pruning strategy for candidate-elimination is also presented.Experiments indicate that the algorithm achieves good performance on both precision and speed.By using this method,the average speaker purity and the average cluster purity have improved by 0.9% and 1.1% respectively,and the time consuming is reduced by 57%.Experiments also show that this method is effective for improving the performance of the unsupervised adaptation as compared with the true speaker-condition.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2010年第1期227-233,共7页 Optics and Precision Engineering
基金 国家863高技术研究发展计划资助项目(No.2006AA701418)
关键词 说话人聚类 在线聚类 决策树 剪枝算法 speaker clustering online clustering decision tree pruning strategy
  • 相关文献

参考文献12

  • 1PADMANABHAN M, BAHL L, PICHENY M. Speaker clustering and transformation for speaker adaptation in large-vocabulary speech recognition systems [C]. ICASSP, 1996:701-704.
  • 2陈景东,姚磊,黄泰翼.几种高鲁棒性通道及说话人自适应语音识别算法研究[J].声学学报,1998,23(6):537-544. 被引量:9
  • 3吕萍,颜永红.基于回归分析的语音识别快速自适应算法[J].声学学报,2005,30(3):222-228. 被引量:4
  • 4CHEN S,GOPAI.AKRISHNAN P. Speaker, environment and channel change detection and clustering via the bayesian information criterion[C]. Proc. of BNTUW- 98, Lansdowne, 1998 : 127-132.
  • 5JIN H, KUBALA F, SCHWARTZ R. Automatic speaker clustering[C]. Proc. of DARPA. Speech Recognition Workshop, 1997 : 108-111.
  • 6KUBAI.A F, COLBATH S, LIU D, et al.. Inte grated technologies for indexing spoken language [J]. Commu. ACM, 2000,43(2):48-56.
  • 7王炜,吕萍,颜永红.一种改进的基于层次聚类的说话人自动聚类算法[J].声学学报,2008,33(1):9-14. 被引量:4
  • 8LIU D, KUBALA F. Online speaker clustering [C]. ICASSP, 2004:333-336.
  • 9WANG W, LV P, ZHAO QW, et al.. A decision-tree-based online speaker clustering [ C]. LNCS, 2007: 555-562.
  • 10DUDA R, HART P,STORK D. Pattern Classification[M]. 2nd ed. John Wiley & Sons, Inc. , 2001.

二级参考文献28

  • 1吕萍,颜永红.基于回归分析的语音识别快速自适应算法[J].声学学报,2005,30(3):222-228. 被引量:4
  • 2徐向华,朱杰,郭强.决策树结构对说话人自适应影响的研究[J].声学学报,2006,31(1):42-47. 被引量:3
  • 3Liu F H,Proc IEEE Int Conf Acoust Speech Signal Processing,1994年,61页
  • 4程云鹏,矩阵论,1989年
  • 5Dong Yu,Proc EUROSPEECH’95,477页
  • 6张希军,软件学报,1996年,863专刊
  • 7S. Chert, P. Gopalakrishnan. Speaker, environment and channel change detection and clustering via the Bayesian Information Criterion, DARPA Broadcast News Transcription and Understanding Workshop[C], Landsdowne, VA ,1998.
  • 8A. Solomonoff and A. Mielke and M. Schmidt and G. Herbert, Clustering Speakers by their Voices[C], ICASSP,Seattle, May, 1998.
  • 9R. Faltlhauser and G. Ruske,Robust Speaker Clustering in Eigenspace, In: Proc. ASRU2001[C], 2001.1252.
  • 10Masaki Naito, Li Deng, Yoshinori Sagisaka, Speaker clustering for speech recognition using vocal tract parameters[J]. Speech Communication 2003,305-315.

共引文献16

同被引文献13

  • 1Takiguchi T,Nakamura S,Shikano K.HMM-separation-based speech recognition for a distant moving speaker[J].IEEE Transactions on Speech and Audio Processing,2001,9(2):127-140.
  • 2Johnson M,Sinha P.A compact model for speakeradaptive training[J].Powder Technology,2013,237(3):506-513.
  • 3Kinnunen T,Li H.An overview of text-independent speaker recognition:from features to supervectors[J].Speech Communication,2010,52(1):12-40.
  • 4Kasuriya S,Wutiwiwatchai C,Achariyakulporn V,et al.Comparative study of continuous hidden Markov models(CHMM)and artificial neural network(ANN)on speaker identification system[J].International Journal of Uncertainty,Fuzziness and Knowledge-Based Systems,2001,9(6):673-683.
  • 5Campbell W M,Sturim D E,Reynolds D A.Support vector machines using GMM supervectors for speaker verification[J].Signal Processing Letters,2006,13(5):308-311.
  • 6Munteanu D P,Toma S A.Automatic speaker verification experiments using HMM[C]∥8th International Conference on Communications,Bucharest,Romanian,2010:107-110.
  • 7Badran E F M F,Selim H.Speaker recognition using artificial neural networks based on vowel phonemes[C]∥5th International Conference on Signal Processing,Beijing,China,2000:796-802.
  • 8Ding I J,Yen C T.Enhancing GMM speaker identification by incorporating SVM speaker verification for intelligent web-based speech applications[J].Multimedia Tools and Applications,2015,74(14):5131-5140.
  • 9Sen N,Patil H A,Mandal S K D,et al.Importance of Utterance Partitioning in SVM Classifier with GMM Supervectors for Text-Independent Speaker Verification[M].Heidelberg:Springer International Publishing,2013:780-789.
  • 10Neff M,Kipp M,Albrecht I,et al.Gesture modeling and animation based on a probabilistic re-creation of speaker style[J].Acm Transactions on Graphics,2008,27(1):329-339.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部