期刊文献+

多线索多层次的视频语义事件检测模型 被引量:1

下载PDF
导出
摘要 视频语义事件检测分析技术是近年来研究的热点问题。本文综合考虑视频语义事件多线索的特点以及事件之间的层次关系,在前人研究成果的基础上,基于动态贝叶斯网络提出了多线索多层次视频语义事件检测模型,该模型具有较高的查全率和查准率,较强的鲁棒性,是一种很有前景的视频语义分析模型。
作者 毕殿杰
出处 《科技信息》 2009年第30期30-30,32,共2页 Science & Technology Information
基金 安徽财经大学09年度青年科研项目(ACKYQ0947ZC) 安徽省高校自然科学研究基金项目(KJ2009B060Z)资助
  • 相关文献

参考文献5

  • 1M.Han,W.Hua,W.Xu,Y.H.Gong.An Integrated Baseball Digest System UsingMaximum Entropy Method.Proceedings of ACM International Conference on Multimedia,2002.
  • 2杜友田,陈峰,徐文立.基于多层动态贝叶斯网络的人的行为多尺度分析及识别方法[J].自动化学报,2009,35(3):225-232. 被引量:23
  • 3金国英,陶霖密,徐光,张翔.基于HHMM的多线索融合和事件推理方法[J].清华大学学报(自然科学版),2007,47(1):112-115. 被引量:4
  • 4L.Xie,S.F.Chang,A.Divakaran,H.Sun.Unsupervised Discovery of Multilevel Statistical Video Structures Using Hierarchical Hidden Markov Models",Proceedings of IEEE International Conference on Multimedia and Expo,2003.
  • 5F.Wang,Y.F.Ma,H.J.Zhang,J.T.Li.Dynamic Bayesian Network Based Event Detection for Soccer Highlight Extraction.Proceedings of IEEE International Conference on Image Processing,Singapore,October 2004.

二级参考文献29

  • 1杜友田,陈峰,徐文立,李永彬.基于视觉的人的运动识别综述[J].电子学报,2007,35(1):84-90. 被引量:79
  • 2Bengio Y. Markovian models for sequential data. Neural Computing Surveys, 1999, 2:129-162.
  • 3Gu H Y, Tseng C Y, Lee L S. Isolated-utterance speech recognition using hidden Maxkov models with bounded state durations. IEEE Transactions on Signal Processing, 1991, 39(8): 1743-1752.
  • 4Levinson S E. Continuously variable duration hidden Markov models for automatic speech recognition. Computer Speech and Language, 1986, 1(1): 29-45.
  • 5Russell M J, Moore R K. Explicit modeling of state occupancy in hidden Markov models for automatic speech recognition. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. Florida, USA: IEEE, 1985. 5-8.
  • 6Duong T V, Bui H H, Phung D Q, Venkatesh S. Activity recognition and abnormality detection with the switching hidden semi-Markov model. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 838-845.
  • 7Murphy K P. Dynamic Bayesian Network: Representation, Inference and Learning [Ph. D. dissertation], University of California, USA, 2002.
  • 8Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding. Science, 2000, 290(5000): 2323-2326.
  • 9Aggarwal J K, Park S. Human motion: modeling and recognition of actions and interactions. In: Proceedings of the 2nd International Symposium on 3D Data Processing, Visulization, and Transmission. Thessaloniki, Greece: IEEE, 2004. 640-647.
  • 10Pers J, Vuckovic G, Dezman B, Kovacic S. Scale-based human motion representation for action recognition. In: Proceedings of the 3rd International Symposium on Image and Signal Processing and Analysis. Rome, Italy: IEEE, 2003. 668-673.

共引文献24

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部