期刊文献+

基于汽车操纵信号的驾驶员疲劳状态检测 被引量:16

Detection of Driver's Fatigue Based on Vehicle Performance Output
下载PDF
导出
摘要 将驾驶方向盘运动信息及道路偏移值作为驾驶员疲劳表征信息,通过模拟器的模拟驾驶实验,采集10名驾驶员疲劳表征数据,建立神经网络模型对驾驶员疲劳状态进行检测.基于PVT(Psychomotor Vigilance Task)测试结果及驾驶录像,采集清醒状态与疲劳状态的实验数据,并进行分析;然后对数据进行离散化和归一化,作为神经网络模型的输入.采用BP算法对神经网络模型进行训练,直至满足误差要求.实验结果表明,该方法检测驾驶员疲劳状态的准确率较高,实用性较强. The steering wheel motion and lateral position were used to evaluate the driver's fatigue based on the driving experiments on driving simulator. The driver's fatigue detection system was developed by neural network. Data of ten driver's driving experiments are collected and divided into two levels of fatigue based on the PVT (psychomotor vigilance task) testing and record video. And then, the data are processed off-line to find the difference between alert and fatigue. As the input data of neural network, the steering wheel angle and lateral position should be discretized and normalized. The neural network is trained by BP algorithm until the expected error is reached. The experiment results show that this method is effective and practical to identify the driver's fatigue level.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2010年第2期292-296,共5页 Journal of Shanghai Jiaotong University
基金 机械系统与振动国家重点实验室资助项目(MSV-MS-2008-10) 新世纪优秀人才支持计划资助项目
关键词 疲劳驾驶 方向盘转角 道路偏移 人工神经网络 fatigue driving steering wheel motion lateral position artificial neural network (ANN)
  • 相关文献

参考文献7

  • 1毛喆,初秀民,严新平,吴超仲.汽车驾驶员驾驶疲劳监测技术研究进展[J].中国安全科学学报,2005,15(3):108-112. 被引量:76
  • 2Jap B. Using EEG spectral components to assess algorithms for detecting fatigue [J]. Expert Systems with Applications, 2009, 36(2) : 2352-2359.
  • 3Bergasa L, Nuevo J. Real-time system for monitoring driver vigilance [J].IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 63-77.
  • 4Skipper J, Wierwille W, Hardee L. An investigation of low-level stimulus-induced measures of driver drowsiness[M]. Amsterdam: Virginia Polyteehnie Institute and State University, 1985.
  • 5Siegmund K, King G, Mumford D. Correlation of steering behavior with heavy truck driver fatigue[J]. SAlE Transactions, 1996, 105(6): 1547-1568.
  • 6Eskandarian A, Mortazavi A. Evaluation of a smart algorithm for commercial vehicle driver drowsiness deteetion[C]//Intelligcnt Vehicles Symposium. Istanbul, Turkey:IEEE Press , 2007:553-559.
  • 7石坚,吴远鹏,卓斌,马勇,许晓鸣.汽车驾驶员主动安全性因素的辨识与分析[J].上海交通大学学报,2000,34(4):441-444. 被引量:42

二级参考文献24

  • 1向多样化发展的新型手表[J].福建轻纺信息,1995(1):16-16. 被引量:8
  • 2赵振宇.模糊理论和神经网络的基础和应用[M].北京:清华大学出版社,1993..
  • 3阿久津 英作,自动车技术,1995年,14页
  • 4赵振宇,模糊理论和神经网络的基础与应用,1993年
  • 5Nikolaos P. Vision based detection of driver fatigue[A]. IEEE International Conference on Intelligent Transportation[C],1997.9.
  • 6Anneke Heitmann, Rainer Guttkuhn, Acacia Aguirre etc. Technologies for the Monitoring and Prevention of Driver Fatigue[A]. Proceedings of the First International Driving Symposium on Human Factor in Driver Assessment, Training and Vehicle Design[C],2001.8.
  • 7Philip W Kithil, Roger D.Jones, John MacCuishi. Development of Driver Alertness Detection System Using Overhead Capacitive Sensor Array[A]. SAE Technical Paper Series 982292, SAE International[C],1998.2.
  • 8S.A.M.G-3-Steering Attention Monitor[OL]. http://www.zzzzalert.com/passsambroch.htm.
  • 9STEERING ATTENTION MONITOR[OL]. http://www.carkits.com.au/index.htm.
  • 10Gerry E. Warning system for fatigued drivers nearing reality with new eye data[J]. Science Daily Magazine,1999,(7):25~30.

共引文献106

同被引文献123

引证文献16

二级引证文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部