摘要
考虑带有正、负顾客的N策略工作休假M/M/1排队。负顾客一对一抵消队尾的正顾客(若有),若系统中无正顾客,到达的负顾客自动消失,负顾客不接受服务。在休假期间,服务员并未完全停止工作而是以较低的服务率为顾客服务。用拟生灭过程和矩阵几何解方法,我们给出了稳态队长和稳态等待时间的分布。此外,我们也证明了稳态条件下的队长和等待时间的条件随机分解并得到了附加队长和附加延迟的分布。
We consider an M/M/1 queue with working vacations and N-policy in which customers are either "positive" or "negative". Negative customers remove positive customers only at the end (if present). When they arrives, and if the system is empty, negative customers will disappear. Negative customers need no services. The server works at a lower rate rather than completely stops during a vacation period. Using QBD(quasi birth and death) process and matrix-geometric solution method, we obtain the steady-state distributions for queue length and conditional waiting time. Furthermore,we prove the conditional stochastic decomposition of queue length and waiting time in the stationary state and gain the distributions for additional queue length and additional delay.
出处
《运筹与管理》
CSCD
北大核心
2010年第1期100-105,共6页
Operations Research and Management Science
基金
国家自然科学基金资助项目(70571030
10571076)
关键词
运筹学
工作休假N策略
拟生灭过程和矩阵几何解
负顾客
条件随机分解
M/M/1排队
operational research
working vacations and N-policy
quasi-birth-and-death process and matrix-geo- metric solution
negative customers
conditional stochastic decomposition
M/M/1 queue