期刊文献+

基于工艺参数的7005铝合金力学性能的支持向量回归预测 被引量:11

Quantitative prediction of mechanical properties of 7005 Al alloys from processing parameters via support vector regression
下载PDF
导出
摘要 根据7005铝合金在不同工艺参数(挤压温度、挤压速度、淬火方式和时效条件)下的力学性能(抗拉强度σb、屈服强度σ0.2和硬度HB)实测数据集,应用基于粒子群算法(PSO)寻优的支持向量回归(SVR)结合留一交叉验证(LOOCV)的方法,对7005铝合金力学性能进行建模和预测研究,并与偏最小二乘法(PLS)、反向传播人工神经网络(BPNN)和两者结合的PLS-BPNN模型的预测结果进行比较。结果表明:基于SVR-LOOCV法的预测精度最高,对3种力学性能(σb、σ0.2和HB)预测的均方根误差(RMSE)分别为4.5319MPa、14.5508MPa和HB1.4142,其平均相对误差(MRE)分别为0.72%、2.61%和0.66%,均比PLS、BPNN和PLS-BPNN方法预测的RMSE和MRE要小。 The support vector regression (SVR) approach based on the particle swarm optimization (PSO) for its parameter optimization, combined with leave-one-out cross validation (LOOCV), was proposed to predict the mechanical properties (tensile strength σb, yield strength σ0.2 and hardness HB) of 7005 Al alloys under different processing parameters including extrusion temperature, extrusion velocity, quenching type and aging time. The results strongly support that the prediction precision of SVR-LOOCV method is superior to those of partial least squares (PLS), back-propagation neural networks (BPNN) and their combination PLS-BPNN model by applying the identical dataset. The root mean square errors (RMSE) for σb, σ0.2 and HB achieved by SVR-LOOCV are 4.531 9 MPa, 14.550 8 MPa and HB 1.414 2, respectively, and their mean relative errors (MRE) are 0.72%, 2.61% and 0.66%, respectively, which are less than those predicted by PLS, BPNN or PLS-BPNN approach.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2010年第2期323-328,共6页 The Chinese Journal of Nonferrous Metals
基金 教育部新世纪优秀人才支持计划资助项目(NCET-07-0903) 教育部留学回国人员科研启动基金资助项目(教外司留[2008]101-1) 重庆市自然科学基金资助项目(CSTC2006BB5240) 国家大学生创新性实验计划资助项目(CQUCX-G-2007-016)
关键词 7005铝合金 力学性能 支持向量机 粒子群算法 留一交叉验证法 回归分析 7005Al alloys mechanical properties support vector machines particle swarm optimization leave-one-out cross validation regression analysis
  • 相关文献

参考文献16

  • 1方善锋,汪明朴,王正安,齐卫宏,李周.PLS-BPN法用于7005铝合金力学性能与工艺参数的定量研究[J].中国有色金属学报,2007,17(12):1948-1954. 被引量:6
  • 2VAPNIK V. The nature of statistical learning theory[M]. New York: Springer, 1995.
  • 3HUANG C, DAVIS L S, TOWNSHEND J R G. An assessment of support vector machines for land cover classification[J]. International Journal of Remote Sensing, 2002, 23(4): 725-749.
  • 4KIM K I, JUNG K, PARK S H, KIM H J. Support vector machine-based text detection in digital video[J]. Pattern Recognition, 2001, 34(2), 527-529.
  • 5THUBTHONG N, KIJSIRIKUL B. Support vector machines for Thai phoneme recognition[J]. International Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 2001, 9(6): 803-813.
  • 6TAY F E H, CAO L J. Epsilon-descending support vector machines for financial time series forecasting[J]. Neural Processing Letters, 2002, 15(2): 179-195.
  • 7LIONG S Y, SIVAPRAGASAM C. Flood stage forecasting with support vector machines[J]. Journal of the American Water Resources Association, 2002, 38(1): 173-186.
  • 8GAVRISHCHAKA V V, GANGULI S B. Support vector machines as an efficient tool for high-dimensional data processing: Application to sub-storm forecasting[J], Journal of Geophysical Research-Space Physics, 2001, 106(A12): 29911-29914.
  • 9BURBIDGE R, TROTTER M, BUXTON B, HOLDEN S. Drug design by machine learning: Support vector machines for pharmaceutical data analysis[J]. Computers and Chemistry, 2001,26(1): 5-14.
  • 10CAI C Z, HAN L Y, JI Z L, CHEN Y Z. Enzyme family classification by support vector machines[J]. Proteins, 2004, 55(1): 66-76.

二级参考文献36

共引文献10

同被引文献89

引证文献11

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部