期刊文献+

矢量地图空间信息度量及其变化分析方法 被引量:2

Measurements of Geospatial Information and Their Changes for Vector Map
下载PDF
导出
摘要 如何计算地图的空间信息含量是评价制图质量、地图综合算法以及实现空间信息有效传输的重要基础。论文在详细分析现有的空间信息度量方法的基础上,提出了一种空间信息度量的新方法。该方法分别从几何、专题、拓扑以及专题拓扑4个方面来度量地图空间信息。然后,提出利用膨胀和序贯膨胀形态学算子分析几何信息熵、专题信息熵、拓扑信息熵以及专题拓扑信息熵随地图符号影响范围不同而引起的变化。通过算例分析发现,利用Voronoi图计算得到的结果是论文方法的一个极值结果(即特例),并且该方法便于定量分析地图空间信息熵度量随符号影响范围(或大小)的变化情况。 Measuring the content of geospatial information are the key to evaluating cartographic quality and generalization algorithm, and transferring of geospatial information. To develop a set of new measurements for geospatial information, this paper firstly makes a critical examination of the existing approaches for geospatial information measurement. And then, a reclassification of contents of geospatial information is made considering geometric, thematic, topological and thematic topology. Tbe corresponding measurements are further developed, including geometric information entropy, thematic information entropy, topological information entropy and thematic topological information entropy. Based on it, the morphology operators, i.e. dilation and sequential dilation, are used to analyze the changes of geospatial information with the incidence of map symbols. It has been shown by an example that the result obtained by Voronoi diagram is an extremum of proposed method in this paper. Indeed, our method is able to provide a series of entropy measurements with different times of dilations for map symbols.
出处 《地理信息世界》 2010年第1期78-83,共6页 Geomatics World
基金 国家自然科学基金项目资助(40871180) 现代工程测量国家测绘局重点实验室开放基金项目资助(TJES0801)
关键词 地图空间信息度量 信息熵 形态学算子 geospatial information measurement entropy morphological operator
  • 相关文献

参考文献12

  • 1BJORKE J T. Framework ior entropybased map evaluation [J]. Cartography and Geographical Information Systems, 1996. 23(2):78-95.
  • 2KNOPFLI R. Communication theory and generalization [C]//Graphic communication and design in contemporary cartography, D. R. Fraser Taylor (Ed.). New York: John Wiley & Sons Ltd., 1983 : 177-218.
  • 3SHANNON C E. A Mathematical Theory of Communication [J]. The Bell System Technical Journal, 1948,27 : 379 - 423 & 623-656.
  • 4SUKHOV V I. Information capacity of a map entropy[J]. Geodesy and Aerophotography. 1967, X : 212-215.
  • 5SUKHOV V I. Application of information theory in generalization of map contents [J]. International Yearbook of Cartography, 1970,X :41-47.
  • 6NEUMANN J. The topological information content of a map: An attempt at a rehabilitation of informa tion theory in cartography [J]. Cartographical, 1994, 31 : 26-34.
  • 7LI Zhi-lin, HUANG Pei-zhi. Quantitative measures for spatial information of maps[J]. International Journal of Geographical lnformalion Science, 2002, 16(7): 699-709.
  • 8SERRA, J. hnage Analysis and Mathematical Morphology [M]. Academic Press, 1992 : 271-296.
  • 9陈鹰,林怡.基于数学形态学的TIN和GRID自动生成研究[J].测绘学报,2002,31(z1):86-91. 被引量:7
  • 10陈晓勇.数学形态学与影像分析[M].北京:测绘出版社,1991..

二级参考文献3

共引文献9

同被引文献18

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部