期刊文献+

不连续温度场问题的间断Galerkin方法 被引量:5

A DISCONTINUOUS GALERKIN METHOD FOR DISCONTINUOUS TEMPERATURE FIELD PROBLEMS
下载PDF
导出
摘要 针对不连续温度场问题建立了一种间断Galerkin有限元方法,该方法的主要特点是允许插值函数在单元边界上存在跳变.在建立有限元方程时,通过在单元边界上引入数值通量项和稳定性项来处理间断效应,并且数值通量可以直接由接触热阻的定义式导出.数值算例表明该方法可以很方便且准确地捕捉到结构内部由于接触热阻而引起的温度跳变,同时在局部高梯度温度场的模拟方面也比常规连续Galerkin有限元方法效率明显要高.该方法也为研究由接触热阻引起的温度场与应力场之间的耦合问题提供了一种新的数值模拟手段. A discontinuous Galerkin(DG) finite element method for the discontinuous temperature field problems is presented.The DG method uses discontinuous interpolation functions on the element boundaries, and the discontinuous effect is considered by the penalty function techniques,in which the numerical flux and the stabilization term are adopted at the interface.By substituting the numerical flux at the imperfect contact interface with the definition of the thermal contact resistance,and eliminating the stabilization term,the present DG method can easily and accurately capture the temperature jump caused by thermal contact resistance. Compared with the continuous Galerkin method,the present DG method also has higher computational efficiency in capturing the peak value of the heat flux of the local high gradient temperature field.Numerical examples also show that the present DG method is a novel numerical method for solving the coupling problems between the temperature and stress field caused by thermal contact resistance.
出处 《力学学报》 EI CSCD 北大核心 2010年第1期74-82,共9页 Chinese Journal of Theoretical and Applied Mechanics
基金 国家自然科学基金资助项目(10872104)~~
关键词 间断Galerkin法 接触热阻 高梯度 数值通量 耦合非线性 discontinuous Galerkin method thermal contact resistance high gradient numerical flux coupling nonlinearity
  • 相关文献

参考文献19

  • 1Moes N, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 1999, 46:131-150.
  • 2Blandford GE, Tauchert TR. Thermoelastic analysis of layered structures with imperfect layer contact. Computers Structures, 1985, 21(6): 1283-1291.
  • 3Reed WH, Hill TR. Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, 1973, Los Alamos Scientific Laboratory.
  • 4冯康.论间断有限元的理论[J].计算数学,1979,4:378-385.
  • 5Flaherty JE, Krivodonova L, Remacle JF, et al. Aspects of discontinuous Galerkin methods for hyperbolic conservation laws. Finite Elements in Analysis and Design, 2002, 38:889-908.
  • 6蔚喜军,周铁.流体力学方程的间断有限元方法[J].计算物理,2005,22(2):108-116. 被引量:25
  • 7贺立新,张来平,张涵信.间断Galerkin有限元和有限体积混合计算方法研究[J].力学学报,2007,39(1):15-22. 被引量:28
  • 8李子然,吴长春.弹性力学问题中的间断Galerkin有限元法[J].上海交通大学学报,2003,37(5):770-773. 被引量:3
  • 9Kim CK. Discontinuous time-space Galerkin finite element discretization technique for the analysis of two-dimensional heat conduction. JSME International Journal, Series A: Solid Mechanics and Material Engineering, 2003, 46: 103-108.
  • 10Pichelin E, Coupez T. A Taylor discontinuous Galerkin method for the thermal solution in 3D mold filling. Computer Methods in Applied Mechanics and Engineering, 1999, 178:153-169.

二级参考文献59

  • 1贺立新,张来平,张涵信.任意单元间断Galerkin有限元计算方法研究[J].空气动力学学报,2007,25(2):157-162. 被引量:15
  • 2[1]Hughes T J R, Hulbert G M. Space-time finite element methods for elastodynamics: Formulations and error estimates, Comput Methods Appl Mech Engrg, 1988,66: 339~363
  • 3[2]Hulbert G M, Hughes T J R. Space-time finite element methods for second-order hyperbolic equations, Comput Methods Appl Mech Engrg, 1990, 84: 327~348
  • 4[3]Hulbert G M. Time finite element methods for structural dynamics. Int J Numer Methods Eng, 1992, 33: 307~331
  • 5[4]Johnson C. Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput Methods Appl Mech Eng, 1993, 107: 117~129
  • 6[5]Li X D, Wiberg N E. Structural dynamic analysis by a time-discontinuous Galerkin finite element method. Int J Numer Methods Eng, 1996, 39: 2131~2152
  • 7[6]Li X D, Wiberg N E. Implementation and adaptivity of a space-time finite element method for structural dynamics. Comput Methods Appl Mech Eng, 1998, 156: 211~229
  • 8[7]Wiberg N E, Li X D. Adaptive finite element procedures for linear and non-linear dynamics. Int J Numer Methods Eng, 1999, 46: 1781~1802
  • 9[8]Durate A, Carmo E, Rochinha F. Consistent discontinuous finite elements in elastodynamics. Computer Methods Appl Mech Engng, 2000, 190: 193~223
  • 10[9]Freund J. The space-continuous-discontinuous Galerkin method. Computer Methods Appl Mech Engng, 2001, 190: 3461~3473

共引文献57

同被引文献51

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部