期刊文献+

基于ι~∞范数的稀疏ICA和FCM的自然图像特征提取 被引量:1

Image feature extraction based on sparse ICA with ι~∞ norm and FCM
下载PDF
导出
摘要 为了保证图像特征系数的稀疏性和加快寻找最优基的收敛速度,提出了一种基于ι∞范数的稀疏独立分量分析(SICA)的算法。该SICA算法采用ι∞范数作为ICA的稀疏性度量标准,用模糊C均值聚类算法初始化独立分量的特征基,有效地实现了自然图像的特征提取;而且,该SICA方法不需要优化高阶的非线性函数和密度估计,因而计算简单、且收敛速度较快;同时,利用提取的图像特征成功地实现了图像恢复,通过图像恢复对比实验表明了该方法在特征提取方面的合理性和实用性。 To ensure the sparsity of image feature coefficients and improve the convergence speed of finding the optimized features,a method of sparse independent component analysis(SICA) based on ι~∞ norm is proposed.Features of natural images is extracted efficiently by this SICA algorithm,which utilizes the ι~∞ norm as the sparse measurement criterion of ICA and the fuzzy C-mean clustering(FCM) method to initialize feature basis vectors of independent components.Moreover,this SICA method does not need optimizing the high-order non-linear functions and density estimation,therefore,it is very simple in computing and its convergent speed is also very quick.At the same time,the image restoration work is successfully implemented by using these features extracted.Further,compared with other methods of image restoration,the experimental results testify that this feature extraction is also reasonable and practical in application.
作者 尚丽 杜吉祥
出处 《计算机工程与设计》 CSCD 北大核心 2010年第4期783-787,共5页 Computer Engineering and Design
基金 江苏省“青蓝工程”基金项目(QL08030) 国家自然科学基金项目(60805021、60970058) 中国博士后科学基金项目(20060390180、200801231) 福建省自然科学基金项目(A0810010、A0740001) 江苏省自然科学基金项目(BK2009131)
关键词 独立分量分析 ι∞范数 模糊C均值聚类 自然图像 特征提取 independent component analysis norm fuzzy C-mean clustering natural images feature extraction
  • 相关文献

参考文献9

二级参考文献52

  • 1赵昱,申铉国.非重叠背景噪声下的自适应维纳滤波模式识别方法[J].光学技术,2005,31(1):90-92. 被引量:4
  • 2尚丽,郑春厚.基于稀疏编码的自然图像特征提取及去噪[J].系统仿真学报,2005,17(7):1782-1784. 被引量:12
  • 3楚恒,李杰,朱维乐.一种基于小波变换的多聚焦图像融合方法[J].光电工程,2005,32(8):59-63. 被引量:28
  • 4Hyvarinen A, Karhunen J, Oja E. Independent Component Analysis [M]. New York: John Wiley & Sons, Inc, 2001. 391-406.
  • 5Lee J H, Jung H Y, Lee T W, et al. Speech Feature Extraction Using Independent Component Analysis [A]. Proc IEEE ICASSP [C]. 2000. 1631-1634.
  • 6Kotani M, Shirata Y, Maekawa S, et al. Application of Independent Component Analysis to Feature Extraction of Speech [A]. Proc IEEE International Joint Conference on Neural Networks [C]. 1999. 2981-2984.
  • 7Cardoso J F, Souloumiac A. Blind Beamforming for Non-Gaussian Signals [J]. IEE Proc.-F, 1993, 140(6): 362-370.
  • 8Hyvarinen A. Sparse Code Shrinkage: Denoising of Nongaussian Data by Maximum Likelihood Estimation [J]. Neural Computation, 1999, 11(7): 1739-1768.
  • 9Hyvarinen A, Hoyer P, Oja E. Sparse Code Shrinkage for Image Denoising [A]. Proc IEEE International Joint Conference on Neural Networks [C]. 1998. 859-864.
  • 10Potamitis I, Fakotakis N, Kokkinakis G. Speech Enhancement Using the Sparse Code Shrinkage Technique [A]. IEEE International Conference on Acoustic Speech and Signal Processing [C]. 2001. 621-624.

共引文献32

同被引文献39

  • 1李洪,孙云莲.基于EMD虚拟通道的ICA算法在信号消噪中的应用[J].北京邮电大学学报,2007,30(5):33-36. 被引量:16
  • 2蔡荣太,王延杰.独立分量分析的理论框架[J].微计算机信息,2007,23(36):197-198. 被引量:2
  • 3杨福生;洪波.独立分量分析的原理与应用[M]北京:清华大学出版社,2006.
  • 4马建仓;牛奕龙;陈海洋.盲信号处理[M]北京:国防工业出版社,2006.
  • 5史习智.盲信号处理一理论与实践[M]上海:上海交通大学出版社,2008.
  • 6Aapo Hyvarinen,Juha Karhunen,Oja Erkki. Independent Component Analysis[M].New York:John Wiley and Sons,Inc,2001.
  • 7Yang H,Amari S. Adaptive on-line learning algorithms for blind separation-maximum entropy and minimum mutual information[J].Neural Computation,1997,(09):1457-1482.
  • 8Cardoso J F. Equivarient adaptive separation[J].IEEE Transactions on Signal Processing,1996,(12):3017-3029.
  • 9Bell A,Sejnowski T. An information maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995,(06):1129-1159.
  • 10Hyvarinen A,Oja E. A Fast Fixed-point Algorit for Independent Component Analysis[J].Neural Computation,1997,(07):1483-1492.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部