期刊文献+

多层关联规则挖掘算法的研究及应用 被引量:5

Research and application of multi-association rule mining algorithm
下载PDF
导出
摘要 针对商业银行业务系统中海量数据的分析和研究问题,提出了一种改进频繁项集挖掘算法FP-growth的多层关联规则数据挖掘算法。在对大量商业银行业务交易处理内在规律研究的基础上,依据利润度进行划分,使得该算法在满足用户需求的基础上,有效的缩小了层次结构树的规模,又加快了搜索的速度,从而提高了数据挖掘的效率。模拟算例表明,该算法有效可行,能够更好地适应商业银行交易系统层次结构在大型数据集的数据挖掘。 Aiming at the problem of a large number of transactions in a banking business systems,an improved multilevel association rules algorithm based on the FP-growth algorithm of data mining which improves the frequent itemsets of the data mining is put forward.By analyzing the massive data of the current operational system,the algorithm is classfied based on division of profits.The size of the tree is significantly reduced,and on the basis of the tree,a maximal target frequent itemset mining algorithm is put forward,which satisfies the users requirements and accelerates the speed to traverse the tree,so the mining efficiency is improved in the algorithm.A simulation example is presented to prove the proposed method.Consequently,the proposed algorithm can better adapt to the hierarchical structure of the commercial banking system in large-scale data sets data mining.
作者 陈申燕 曹旻
出处 《计算机工程与设计》 CSCD 北大核心 2010年第4期885-888,共4页 Computer Engineering and Design
关键词 多层关联规则挖掘算法 数据挖掘 商业银行 交易 利润度 multilevel association rule mining algorithm data mining commercial banks customer transactions profit
  • 相关文献

参考文献5

二级参考文献31

  • 1顾泽元,吕宗宝,刘兴丽.频繁项目集发现算法Apriori的研究[J].黑龙江科技学院学报,2005,15(5):319-322. 被引量:6
  • 2李超,余昭平.基于最大模式的关联规则挖掘算法研究[J].微计算机信息,2006(02X):164-165. 被引量:20
  • 3魏宗舒.概率论与数理统计[M].北京:高等教育出版社,1983..
  • 4Bose I, Mahapatra R K. Business data mining—a machine learning perspective[J]. Information & Management, 2001, 39 (3) :211-225.
  • 5Shaw M J, Subramaniam C, Tan G W, Welge M E. Knowledge management and data mining for marketing[ J ]. Decision Support Systems, 2001, 31 (1): 127-137.
  • 6Han J W, Kamber M. Data Mining: Concepts and Techniques[M]. San Francisco: Morgan Kaufmann, 2000. 279-333.
  • 7Lim T S. A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms [J]. Machine Leaming, 2000, 40(3): 203-228.
  • 8Provost F. Robust classification for imprecise environments[J]. Machine Leaming, 2001, 42(3) : 203-231.
  • 9Breiman L. Bagging predictors[J]. Machine Learning, 1996, 24 (2) : 123-140.
  • 10Freund Y, Schapire R E. A decision-theoretic generalization of on-line learning and an application to boosting[J]. Journal of Computer and System Sciences, 1997, 55 (1) : 119-139.

共引文献20

同被引文献62

引证文献5

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部