期刊文献+

基于多组博弈的新型网络流量控制模型 被引量:6

Novel Network Flow Control Model on Multi-Team Game Theory
下载PDF
导出
摘要 该文研究了具有强分布式特征和分层结构的通信网络流量控制问题,借鉴多组博弈模型来研究新型的网络流量控制模型,构造了基于网络流量速率和时延为参数的流量效用函数,使之能适度地满足不同业务的用户流量QoS需求,利用多组博弈优化模型建立了基于Min-Max的公平的网络流量控制博弈模型。理论上证明了提出的网络流量控制模型的非劣纳什策略存在性。数值仿真验证了模型的正确性,仿真结果验证了用户流量在非劣纳什均衡点的效用值是帕累托占优的。 This paper investigates the communication network flow control with strong distributed feature and hierarchical structure, a novel network flow control model is studied by using the multi-team game model, the utility function is built up on flow rate and delay to make user flow satisfy different flow proportional QoS requirement, thus the Min-Max fair flow control game model is constituted by multi-team game optimized model. The existence of the non-inferior Nash equilibrium of the proposed network flow control model is proved theoretically. The correctness of the proposed model is validated by numerical evaluation, simulation result validates the user flow utility value is Pareto optimal at the non-inferior Nash equilibrium point.
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第2期267-271,共5页 Journal of Electronics & Information Technology
基金 国家863计划项目(2006AA01Z232 2005AA121620) 江苏省高技术研究计划项目(BG2007045) 江苏省青年科技创新人才启动项目(BK2007603)资助课题
关键词 网络流量控制 多组博弈 非劣纳什均衡 最小最大化 Network flow control Multi-team game Non-inferior Nash equilibrium Min-Max
  • 相关文献

参考文献9

  • 1Yang Yue-quan, Cao Zhi-qiang, Tan Min, and Yi Jian-qiang. Fairness and dynamic flow control in both unicast and multicast architecture networks[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews, 2007, 37(2): 206-212.
  • 2Cho Jeong-Woo and Chong Song. Utility max-min flow control using slope-restricted utility functions[J]. IEEE Transactions on Communications, 2007, 55(5): 963-972.
  • 3Abdulla M S and Bhatnagar S. Network flow-control using asynchronous stochastic approximation[C]. Proceedings of the 46th IEEE Conference on Decision and Control, CDC, New Orleans, USA, December, 2008: 5857-5862.
  • 4Paganini F. A global stability result in network flow control[J]. Systems and Control Letters, 2002, 46(3): 165-172.
  • 5Jin Young-mi and Kesidis G. Charge sensitive and incentive compatible end-to-end window-based control for selfishusers[J]. IEEE Journal on Selected Area in Communications, 2006, 24(5): 952-961.
  • 6Altman E, Basar T, and Srikant R. Nash equilibria for combined flow control and routing in networks: Asymptotic behavior for a large number of users[J]. IEEE Transactions on Automatic Control, 2002, 47(6): 917-930.
  • 7Sahin I and Simaan M A. A flow and routing control policy for communication networks with multiple competitive Users[J]. Journal of the Franklin Institute, 2006, 343(2): 168-180.
  • 8S S Askera. On dynamical multi-team cournot game in exploitation of a renewable resource [J]. Chaos, Solitons & Fractals, 2007, 32(1): 264-268.
  • 9Rosen J B. Existence and uniqueness of equilibrium points for concave N-person games[J]. Econometrica, 1965, 33(3): 520-534.

同被引文献53

引证文献6

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部