期刊文献+

基于覆盖度函数的概念格约简 被引量:3

Coverage Density Based Approach for Concept Lattice Reduction
下载PDF
导出
摘要 该文针对基于概念格的大规模数据和规则挖掘中,概念节点数呈指数爆炸的问题,提出了概念覆盖度函数和概念格度量模型,进行概念格约简,从而使生成的标示概念格具有线性空间复杂度。给出了概念格约简的直求法、同步法和提取法3种算法。时空复杂度分析和仿真试验表明,所提方法可以大幅约简概念格规模,从而显著提高建格和规则挖掘效率。标示概念还具有特殊含义,在Web服务关系挖掘中有很好的应用。 To address the lattice size exponential explosion problem in large scale data and rule mining, concept coverage density function and measurement model are introduced to reduce redundant concepts. The pruned lattice, named marked-concept lattice, has linear space complexity and can be obtained through direct or synchronous construction or node-extraction. Analysis and simulation tests show that this reduction model not only significantly reduces normal concept lattice size, but also significantly improves lattice building and rule mining efficiency. Furthermore, marked concept carries crucial information and physical meanings, thus can make benefits for Web service relationship mining.
作者 姜峰 范玉顺
出处 《电子与信息学报》 EI CSCD 北大核心 2010年第2期405-410,共6页 Journal of Electronics & Information Technology
基金 国家863计划项目(2007AA04Z150) 国家自然科学基金(60674080 60704027)资助课题
关键词 数据挖掘 形式概念分析 概念格 约简 Web关系挖掘 Data mining Formal Concept Analysis (FCA) Concept lattice Reduction Web relationship mining
  • 相关文献

参考文献15

  • 1Ganter B and Wille R. Formal Concept Analysis Mathematical Foundations [M]. Berlin: Springer Press, 1999: 17-35.
  • 2Kuznetsov S O. Machine learning and formal concept analysis [J]. Lecture Notes in Computer Science, 2004, 2961: 3901-3926.
  • 3Hesse W and Tilley T. Formal concept analysis used for software analysis and modeling [J]. Lecture Notes in Computer Science, 2005, 3626:288-303.
  • 4Laukaitis A and Vasilecas O. Formal concept analysis for business information systems [J]. Information Technology and Control, 2008, 37(1): 33-37.
  • 5Yahia S B and Jaoua A. Discovering Knowledge from Fuzzy Concept Lattice [M]. Kandel A, Last M, Bunke H edits: Data Mining and Computational Intelligence. Heidelberg: Springer Press, 2001: 167-190.
  • 6谢志鹏,刘宗田.概念格的快速渐进式构造算法[J].计算机学报,2002,25(5):490-496. 被引量:120
  • 7蒋义勇,张继福,张素兰.基于链表结构的概念格渐进式构造[J].计算机工程与应用,2007,43(11):178-180. 被引量:11
  • 8Fu H G and Nguifo E M. A parallel algorithm to generate formal concepts for large data [J]. Lecture Notes in Artificial Intelligence, 2004, 2961: 394-401.
  • 9刘利峰,吴孟达,王丹.基于属性约简的概念格构造[J].计算机工程与科学,2007,29(6):140-142. 被引量:5
  • 10Formica A. Concept similarity in formal concept analysis: an information content approach [J]. Knowledge-Based Systems, 2008, 21(1): 80-87.

二级参考文献63

  • 1张文修,魏玲,祁建军.概念格的属性约简理论与方法[J].中国科学(E辑),2005,35(6):628-639. 被引量:194
  • 2吴健,蔡铭,唐敏,董金祥.网络制造中Web Service的服务质量模糊排序方法[J].计算机辅助设计与图形学学报,2005,17(7):1593-1599. 被引量:9
  • 3Menczer F, Pant G, Srinivasan P. Topic Web crawlers: Evaluation adaptive algorithms [J]. ACM Trans on Internet Technologies, 2003, V (N): 1-38.
  • 4Cho J. Crawling the Web: Discovery and maintenance of large-scale Web data [D]. Department of Computer Science, Stanford University, 2001.
  • 5Chakrabarti S, van den Berg M, Dom B. Focused crawling: a new approach to topic-specific Web resource discovery [J]. Computer Networks, 1999, 31 (11~16): 1623-1640.
  • 6F Menczer, G Pant, M Ruiz, P Srinivasan. Evaluating Topic-Driven Web Crawlers [A]. Proceedings of 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval [C], 2001, 241-249.
  • 7Hersovici M, Heydon A, Mitzenmacher M, etc. The shark-search algorithm-An application: Tailored Web site mapping [A]. Proceedings of 7th International World Wide Web Conference [C], 1998, 317-326.
  • 8Cho J, Garcia-Molina H, Page L. Efficient crawling through URL ordering [J]. Computer Networks, 1998, 30(1~7): 161~172.
  • 9Allan Borodin, Gareth O Roberts, Jeffrey S Rosenthal, etc. Finding Authorities and Hubs From Link Structures on the World Wide Web [A]. Proceedings of 10th International world Wide Web Conference, ACM, 2001, 415-419.
  • 10Ester M, Grob M, Kriegel H. Focused Web crawling: a generic framework for specifying the user interest and for adaptive crawling strategies [A]. Proceedings of 26th International Conference on Very Large Database (VLDB'01) [C], 2001, 527-534.

共引文献132

同被引文献28

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部