期刊文献+

基于磁悬浮作动器的自适应有源振动控制研究 被引量:7

Research on adaptive active vibration control using maglev actuator
下载PDF
导出
摘要 针对周期扰动提出一种基于磁悬浮作动器的非线性前馈自适应有源振动控制算法。算法中将磁悬浮作动器视为具有时变非线性的单输入输出系统,并使用径向基函数神经网络进行控制,分别采用聚类算法和随机梯度算法对其隐层中心点和输出层权值进行自适应调整。该算法摆脱了传统磁悬浮控制对模型的依赖,在正常工作条件下不需对作动器建模。仿真和实验结果表明:在单自由度主动隔振系统中,非线性自适应算法可以显著降低周期振动的能量,同时能对磁悬浮作动器的时变非线性进行有效的补偿。 A feedforward adaptive active vibration attenuate periodic disturbance in this paper. Maglev control (AVC) algorithm using maglev actuator is proposed to actuator is viewed as a single-input-single-output (SISO) system with time-varying nonlinearity in the proposed algorithm. the controller, whose hidden-layer centers and output-layer A radial basis function (RBF) neural network is used as weights are adapted according to clustering algorithms and stochastic gradient algorithms respectively. In the proposed algorithm, there is no need to model the maglev actuator under normal circumstance, which is critical and difficult in conventional maglev control. The results of simulations and experiments based on a single degree-of-freedom vibration isolation system show that the adaptive algorithm can greatly attenuate the periodic disturbance, and can efficiently compensate for the actuator's time-varying nonlinearity at the same time.
出处 《声学学报》 EI CSCD 北大核心 2010年第2期146-153,共8页 Acta Acustica
关键词 有源振动控制 自适应调整 作动器 磁悬浮 径向基函数神经网络 时变非线性 控制算法 输入输出系统 Actuators Adaptive algorithms Antivibration mountings Magnetic levitation Magnetic levitation vehicles Neural networks Radial basis function networks Time varying systems Vibration control
  • 相关文献

参考文献16

  • 1龙志强,佘龙华,尹力明,常文森.磁悬浮隔振系统设计与实现[J].国防科技大学学报,1996,18(3):121-127. 被引量:8
  • 2吴伟光,马履中,朱伟,陈修祥.新型混合磁悬浮主动隔振的研究[J].机械设计,2008,25(5):49-51. 被引量:3
  • 3Nagaya K, Ishikawa M. A noncontact permanent magnet levitation table with electromagnetic control and its vibration isolation method using direct disturbance cancellation combining optimal regulators. IEEE Transactions on Magnetics, 1995; 31(1): 885-896.
  • 4Daley S, Johnson F A, Pearson J B et al. Active vibration control for marine applications. Control Engineering Practice. 2004; 12(4): 465-474.
  • 5Fung R F, Liu Y T, Wang C C. Dynamic model of an electromagnetic actuator for vibration control of a cantilever beam with a tip mass. Journal of Sound and Vibration, 2005; 288(4-5): 957-980.
  • 6Trumper D L, Olson S M, Subrahmanyan P K. Linearizing Control of Magnetic Suspension Systems. IEEE Transactions on Control Systems Technology, 1997; 5(5): 427 -438.
  • 7Lindlau J, Knospe C. Feedback linearization of an active magnetic bearing with voltage control. IEEE Transactions on Control Systems Technology, 2002; 10(1): 21-31.
  • 8Fuller C R, Elliott S J, Nelson P A. Active Control of Vibration. London, UK, Academic, 1997.
  • 9Snyder S D, Tanaka N. Active control of vibration using a neural network. IEEE Transactions on Neural Networks, 1995; 6(4): 819-828.
  • 10Bouchard M, Paillard B, Dinh C T L. Improved training of neural networks for the nonlinear active control of sound and vibration. IEEE Transactions on Neural Networks, 1999; 10(4): 819-828.

二级参考文献6

共引文献9

同被引文献47

引证文献7

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部