期刊文献+

算子空间上的超循环性和混沌的左乘映射(英文)

Hypercyclicity and Chaotic Left Multiplication Mappings on Operator Spaces
原文传递
导出
摘要 设X是一个可分的无限维Banach空间,B(X)表示X的算子代数,即所有有界线性算子T:X→X所组成的代数.给定T∈B(X),定义一个左乘映射L_T:B(X)→B(X),L_T(V)=TV,V∈B(X).我们在算子空间B(X)上给出了一个超循环性标准,并且如果X是一个具有对称基的Banach空间,在它的对偶空间X′上也给出了一个类似的标准.此外,还讨论了算子空间B(X)上左乘映射L_T的超循环性和混沌行为与空间X上的算子T的超循环性和混沌行为之间的关系,得到T是Devaney意义下混沌的必要且只要L_T是混沌的. Let X be a separable infinite dimensional Banach space and B(X) be the algebra of all bounded linear operators on X. For any T ∈ B(X), define a left multiplication mapping LT : B(X) → B(X) by LT(V) = TV, V ∈ B(X). We give a hypercyclicity criterion on B(X) and, in addition, if X is a Banach space with a symmetric basis we give a similar criterion on its dual space X'. We also investigate the connections between hypercyclic and chaotic behavior of LT on B(X) and that of T on X, and prove that T is chaotic in the sense of Devaney if and only if the left multiplication operator LT is chaotic.
出处 《数学进展》 CSCD 北大核心 2010年第1期49-58,共10页 Advances in Mathematics(China)
基金 Supported by Science Foundation of Department of Education of Anhui Province(No. KJ2008B249) Science Foundation of Hefei University(No.rc039).
关键词 超循环性 算子空间 强算子拓扑 混沌 hypercyclicity operator space strong operator topology chaos
  • 相关文献

参考文献12

  • 1Grosse-Erdmann, K.-G., Universal families and hypercyclic operators, Bull. Amer. Math. Soc., 1999, 36: 345-381.
  • 2Ansari, S.I., Existence of hypercyclic operators on topological vector space, J. Funct. Anal., 1997, 148: 384-390.
  • 3Yao Y., Shi E., Zhou Y., Strongly mixing operators on Banach space, Chinese Annals of Mathematics, 2006, 27A(2): 189-196.
  • 4Kitai, C., Invariant closed sets for linear operators, Thesis, Univ. of Toronto, Toronto, 1982.
  • 5Gethner, R.M. and Shapiro, J.H., Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc., 1987, 100: 281-288.
  • 6Li T. and Yorke, J., Period 3 implies chaos, Amer. Math. Monthly, 1975, 82:985-992.
  • 7Devaney, R.L., Introduction to Chaotic Dynamical Systems, 2nd ed, Westview, 2003.
  • 8Banks, J., Brooks, J., Cairns, G., Davis, G. and Stacey, P., On Devaney's definition of chaos, Amer. Ma$h. Monthly,1992, 99: 332-334.
  • 9Chan, K.C. and Taylor Jr., R.D., Hypercyclic Subspaces of a Banach Space, Integr. Equ. Oper. Theory, 2001, 41: 381-388.
  • 10Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I, Springer-Verlag, Heidelberg, 1977.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部