摘要
本文讨论了一类半正奇异Sturm-Liouville边值问题正解的存在性,其中非线性项f(t,u)关于t=0,1和u=0奇异.在非线性项可取负值且下方无界的情形下,利用不动点指数理论以及线性算子的特征值理论得到了该问题正解存在性结果.
In this paper, we studied the existence of positive solutions for a class of semipositone singular Sturm-Liouville boundary value problem, f(t, u) is singular at t =0, 1 and u = 0. With the assumption that f is neither nonnegative nor below bounded, we obtained the existence of the positive solutions by using the theory about fixed point index and the theory about the eigenvalue of linear operators.
出处
《数学进展》
CSCD
北大核心
2010年第1期64-70,共7页
Advances in Mathematics(China)
基金
国家自然科学基金项目(No.10626029
No.10701040)
江西省教育厅科技项目(No.GJJ08358
No.GJJ08359)
江西省教改项目(No.JXJG07436)
江西财经大学青年项目(No.04232015
No.JXCDJG0813).