期刊文献+

区间效应代数的张量积 被引量:2

Tensor Products of Interval Effect Algebras
原文传递
导出
摘要 本文主要研究了区间效应代数的张量积的结构.证明了[0,]与[0,1]的张量积不是[0,1]. The structures of tensor products of interval effect algebras are studied. Then we prove that the tensor product of interval effect algebra [0,1] and [0,1] is not [0,1].
出处 《数学进展》 CSCD 北大核心 2010年第1期107-110,共4页 Advances in Mathematics(China)
基金 国家自然科学基金资助项目(No.60873119) 教育部高等学校博士点基金(No.200807180005).
关键词 区间效应代数 张量积 偏序可换群 interval effect algebras tensor products partially ordered groups
  • 相关文献

参考文献7

  • 1Dvurecenskij, A., Pulmannova, S., New Trends in Quantum Structures, Kluwe, Dordrecht, 2000.
  • 2Foulis, D.J., Bennett, M.K., Effect algebras and unsharp quantum logic, Found. Phys., 1994, 24: 1325-146.
  • 3Dvurecenskij, A., Tensor product of difference posets or effect algebras, International Journal of Theoretical Physics, 1995, 34: 1337-1348.
  • 4Dvurecenskij, A., Tensor product of difference posets, Trans. Amer. Math. Soc., 1995, 347: 1043-1057.
  • 5Gudder, S., Morphism, Tensor products and a-effect algebras, Reports on Mathematical Physics, 1998, 42: 321-346.
  • 6Goodearl, K.R., Partially Ordered Abelian Groups With Interpolation, American Mathematical Society Providence, Rhode Island, 1986.
  • 7Wehrung, F., Tensor product of structures with interpolation, Pacific Journal of Mathematics, 1996, 176: 267-285.

同被引文献28

  • 1杜鸿科,邓春源,李启慧.量子效应的下确界问题[J].中国科学(A辑),2006,36(3):320-332. 被引量:2
  • 2BENNETT M K, FOULIS D J. Interval and scale effect algebras[J]. Advances in Applied Mathematics, 1997,91 (19) :200-215.
  • 3GUDDER S,GREECHIE R. Uniqueness and order in sequential effect algebras [J]. International Journal of Theoretical Physics, 2005,44(7) : 755-770.
  • 4GUDDER S, GREECHIE R. Sequential products on effect algebras [J]. Reports on Mathematical Physics, 2002,49 (1) : 87-111.
  • 5MA Zhi-hao. Note on ideals of effect algebras [J]. Information Sciences, 2009,179 (5) : 505-507.
  • 6DVURECENSKIJ A, PULMANNOVA S. New trends in quantum structures [M]. Dordrecht: Kluwer Academic Publishers, 2000.
  • 7GUDDER S, PULMANNOVA S. Representation theorem for convex effect algebras [J]. Coment Math Univ, 1998,39 (4): 645-659.
  • 8RAVINDRAN K. On a structure theory of effect algebras [D]. Manhattan:Kansas State University,1996.
  • 9FOULIS D J, BENNETT M K. Effect algebras and unsharp quantum logics [J]. Foundations of Physics, 1994, 24: 1 331-1 352.
  • 10Foulis D J,Bennett M K.Effect algebra and unsharp quantum logics[J].Inter J Theory Phys,1994,24(10):1325-1346.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部