期刊文献+

基于粗集理论的系统不确定性度量方式研究 被引量:2

Study on System Uncertainty Measures Based on Rough Set Theory
下载PDF
导出
摘要 不确定性是决策信息系统的固有特征,对系统的性能具有重要影响.有效地度量决策信息系统的不确定性具有重要意义.粗集理论是处理不确定信息最成功的工具之一.本文评述多种基于粗集理论的系统不确定性度量方式;分析它们的代数特征和数量关系;并通过仿真实验系统地比较它们的性能.结果表明"全知熵不确定率"是最有效的不确定性度量方式,其合理性通过它的成功应用得到进一步验证. Uncertainty is an intrinsic feature of decision information systems,usually,which affects system performances heavily.Thus,effectively measuring the uncertainty of decision information systems is practically with great significance.Rough set theory is one of the most successful tools for handling uncertain information.Herein,various approaches based on rough set theory for measuring system uncertainty are briefly introduced and remarked,then some of their algebraic characteristics and quantitative relations are disclosed,and their performances are also comprehensively compared through a series of simulation experiments.The results suggest that the method of uncertainty ratio based on all known entropy should be most effective for measuring system uncertainty.Its rationality is further confirmed in a certain sense by its successful application.
作者 赵军 周应华
出处 《小型微型计算机系统》 CSCD 北大核心 2010年第2期354-359,共6页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60373111 60573068)资助 教育部留学回国人员科研启动基金项目(教外司留[2007]1108号)资助 重庆邮电大学科研基金项目(A2006-05)资助
关键词 不确定性度量 粗集理论 全知熵 全知熵不确定率 uncertainty measure rough set theory all known entropy uncertainty ratio based on all known entropy
  • 相关文献

参考文献10

  • 1Pawlak Zdzislaw. Rough sets[ I ]. International Journal of Computer and Information Science, 1982,11 (5) :341-356.
  • 2王国胤.决策表信息系统中的不确定性度量[J].计算机科学,2001,28(5):23-26.
  • 3王国胤,何晓.一种不确定性条件下的自主式知识学习模型[J].软件学报,2003,14(6):1096-1102. 被引量:36
  • 4Duntsch Ivo, Gediga Gunther. Uncertainty measures of rough set prediction[ J]. Artificial Intelligence, 1998,106:109-137.
  • 5陈湘晖,朱善君,吉吟东.基于熵和变精度粗糙集的规则不确定性量度[J].清华大学学报(自然科学版),2001,41(3):109-112. 被引量:23
  • 6Mollestad Torulf. A rough set framework for data mining of propositional default rules,lecture notes in computer science[ M]. Springer Verlag, 1996,1079:448457.
  • 7Ziarko Wojciech. Variable precision rough set model[ J]. Journal of Artificial Intelligence, 1993,46:39-59.
  • 8http ://www. ics. uei. edu/- mlearn/MLRepository, html,2006.
  • 9Nguycn Hung- Son, Skowron Andrzej. Quantization of real values attributes, rough set and boolean reasoning approaches [ C ]. Proceedings of and Joint Annual Conference on Information Science, Wrightsvillc Beach, NC, USA, 1995,34-37.
  • 10苗夺谦,胡桂荣.知识约简的一种启发式算法[J].计算机研究与发展,1999,36(6):681-684. 被引量:507

二级参考文献14

  • 1王珏,苗夺谦,周育健.关于Rough Set理论与应用的综述[J].模式识别与人工智能,1996,9(4):337-344. 被引量:264
  • 2苗夺谦.Rough Set理论及其在机器学习中的应用研究[博士学位论文].北京:中国科学院自动化研究所,1997..
  • 3[1]Pawlak Z, Grzymala-Busse J, Slowin ski R, et al. Rough sets [J]. Communications of the ACM, 1995, 38(11): 88-95.
  • 4[2]Düntsch I, Gediga G. Uncertainty measures of rough set prediction [J]. Artificial Intelligence, 1998, 106: 109-137.
  • 5[3]Ziarko W. Variable precision rough set model [J]. Journal of Computer and System Sciences, 1993, 46: 39-59.
  • 6[4]Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning About Data [M]. Dordrecht: Kluwer Academic Publishers, 1991.
  • 7王珏,J Comput Sci Technol,1998年,13卷,2期,189页
  • 8Miao Duoqian,IEEE ICIPS’97,1997年,1155页
  • 9苗夺谦,博士学位论文,1997年
  • 10陆汝钤,人工智能,1996年

共引文献556

同被引文献35

  • 1Dong X L, Halevy A Y, Yu C. Data integration with uncertainty [J]. The VLDB Journal, 2009, 18 (2) : 469-500.
  • 2Yu Daren, Hu Qinghua, Wu Congxin. Uncertainty measures for fuzzy relations and their applications I-J]. Applied Soft Computing, 2007, 7 (3): 1135- 1143.
  • 3Pawlak Z, Skowron A. Rudiments of rough sets [J]. Information Sciences, 2007, 177(1) : 3-27.
  • 4Qian Yuhua, Liang Jiye, Li Deyu, et al. Measures for evaluating the decision performance of a decision table in rough set theory [J]. Information Sciences, 2008, 178(1): 181-202.
  • 5Liu Guilong. Rough set theory based on two univer- sal sets and its applications [J]. Knowledge-Based Systems, 2010, 23(2):110-115.
  • 6Jung Jaeyoon, Chin Changho, Cardoso J. An en- tropy-based uncertainty measure of process models [J]. Information Processing Letters, 2011, 111(3) 135-141.
  • 7Magro M C, Pinceti P. A confirmation technique for predictive maintenance using the rough set theory [J]. Computing & Industrial Engineering, 2009, 56 (4) : 1319-1327,.
  • 8Chert Xianghui, Zhu Shanjun, Ji Yindong. Rule un- certainty measurements based on entropy and vari- able rough set [J]. Journal of Tsing hua University (Science ~ Technology Edition), 2001, 47(3) : 109- 112.
  • 9Magnani M, Rizopoulos N, Brien M C, et al. Con- ceptual Modeling-ER 2005 [ M ]. Heidelberg : Springer Berlin, 2005: 31-46.
  • 10SHVAIKO P, EUZENAT J. A survey of schema-based matc- hing approaches [ J ]. Journal on Data Semantics IV, 2005 (3730) : 146-171.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部