期刊文献+

有限表现型模与w-凝聚环(英文) 被引量:24

Finitely Presented Type Modules and w-Coherent Rings
下载PDF
导出
摘要 引进了有限型模与w-凝聚环的概念,进行了相关刻划.还证明了R是w-Noether环当且仅当每个有限型模是有限表现型的.由此得到w-Neother环是w-凝聚环. In this paper we introduce the notions of finitely presented type modules and w-coherent rings and make a general discussion on them.We show that a ring R is w-Noetherian if and only if every finite type module is of finitely presented type.Then we get that w-Noetherian rings are w-coherent.
作者 王芳贵
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期1-9,共9页 Journal of Sichuan Normal University(Natural Science)
基金 supported by the National Natural Science Foundation of China (10671137) the Research Foundation for Doctor Programme of Educational Department of China(20060636001)~~
关键词 w-模 有限型模 有限表现型模 w-凝聚环 w-module finite type finitely presented type w-coherent ring
  • 相关文献

参考文献14

  • 1Yin H. w-Modules over commutative rings [ D ]. Nanjing : Library of Nanjing University,2009.
  • 2Zhang J. Chain conditions of w-modules over a commutative ring with zero divisors[ D]. Chengdu : Library of Sichuan Normal University ,2009.
  • 3Wang F G, McCasland R L. On w-modules over strong Mori domains[ J]. Commun Algebra, 1997,25:1285 -1306.
  • 4Wang F G. w-Projective modules and w-flat modules [ J ]. Algebraic Colloquium, 1997,4:111 -120.
  • 5Kim H. Module-theoretic characterizations of t-linkative domains [ J ]. Commun Mgebra,2008,36 : 1649 - ! 670.
  • 6Kim H, Kim E S, Park Y S. Injective modules over strong Mori domains[J]. Houston J Math,2008,34:349 -360.
  • 7Wang F G. Commutative Rings and Theory of Star-Operations [ M ]. Beijing : Sicence Press ,2006.
  • 8Rotman J J. An Introduction to Homological algebra[ M ]. New York, San Francisco, London:Academic Press, 1979.
  • 9Wang F G. Tile Bass-Quillen problem on a class of local rings with weak global dimension two[J]. Science in China,2008,51 : 567 - 580.
  • 10Glaz S. Finite conductor rings[ J]. Proc Am Math Soc,2000,120:2833 -2848.

同被引文献169

引证文献24

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部