期刊文献+

UMT整环上的w-维数 被引量:5

w-Dimension of UMT-Domains
下载PDF
导出
摘要 设R是整环,X是R上的一个未定元,{Xλ}λ∈Λ是R上任意多个未定元的集合.证明了若R是UMT整环,则w-dimR=w-dim(R[{Xλ}λ∈Λ]).进一步研究了UMT整环上的群环,证明了若R是UMT整环,则w-dimR=w-dimR[X;G]. Let R be an integral domain and X an indeterminate (respectively,{Xλ}λ∈Λ a set of arbitrary indeterminates) over R.In this paper, we show that if R is a UMT-domain, then w-dim R =w-dim(R[{Xλ}λ∈Λ]).We further characterize the group ring R[X;G]over a UMT-domain R and prove that w-dim R=w-dimR[X;G].
作者 李庆 王芳贵
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期24-26,共3页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10671137) 教育部博士点专项科研基金(20060636001)资助项目 西南民族大学自然科学基金青年项目(09NQN004)
关键词 UMT整环 w-维数 多项式环 群环 UMT-domain w-dimension polynomial ring group ring
  • 相关文献

参考文献8

  • 1Wang Fang- gui, McCasland R L. On strong Mori domains[ J]. J Pure Appl Algebra, 1999,135:155 -165.
  • 2Fontana M, Gabelli S, Houstan E. UMT-domains and domains with Prufer integral closure[J]. Comm Algebra,1998,26:1017-1039.
  • 3王芳贵.PVMD与自反模[J].四川师范大学学报(自然科学版),2005,28(4):379-385. 被引量:12
  • 4王芳贵.交换环与星型算子[M].北京:科学出版社,2006.
  • 5陈幼华,尹华玉.关于模的主理想定理[J].四川师范大学学报(自然科学版),2009,32(3):269-272. 被引量:2
  • 6Chang G W. Strong Mori domains and he ring D[X]Nv[J]. J Pure Appl Algebra,2005,197:293 -304.
  • 7Breuer J W, Cosra D L, Lady E L. Prime ideals and localization in commutative group rings [ J ]. J Algebra, 1975,34:300 -308.
  • 8Park M H. Group rings and semigroup rings over strong Mori domains[ J]. J Pure Appl Algebra,2001,163:301 - 318.

二级参考文献21

  • 1王芳贵.GCD整环与自反模[J].数学年刊(A辑),1994,1(2):241-245. 被引量:3
  • 2尹华玉,王芳贵,陈幼华.GV-理想与素子模[J].四川师范大学学报(自然科学版),2007,30(2):160-163. 被引量:2
  • 3George S M, McCasland R L, Smith P F. A principal ideal theorem analogue for modules over commutative rings[J]. Commun Mgebra, 1994,22 ( 6 ) : 2083-2099.
  • 4Wang Fang-gui, McCasland R L. On strong Mori domains[J]. J Pure Appl Algebra,1999,135:155-165.
  • 5Wang Fang-gui, McCasland R L. On w-modules over strong Mori domains [ J ]. Commun Algebra, 1997,25 (4) :1285-1306.
  • 6Lu C P. M-Radicals of submodules in modules[J]. Math Japonica,1989,34(2) :211-219.
  • 7Lu C P. Prime submodules of modules[J]. Comm Math Univ Sancti Pauli,1984,33:61-69.
  • 8Houston E, Malik S B, Mott J.Characterizations of *-multiplication domains[J].Canad Math Bull,1984,27(1):48~52.
  • 9Wang F G, McCasland R L.On w-modules over strong Mori domains[J].Comm Algebra,1997,25(4):1285~1306.
  • 10Mott J, Zafrullah M.On Prüfer v-multiplication domains[J].Manus Math,1981,35(1):1~26.

共引文献12

同被引文献51

  • 1Fang Gui WANG.On t-Dimension over Strong Mori Domains[J].Acta Mathematica Sinica,English Series,2006,22(1):131-138. 被引量:8
  • 2毕公平,王芳贵.Kaplansky变换及其应用[J].四川师范大学学报(自然科学版),2006,29(4):387-391. 被引量:2
  • 3Chang G W, Zafndlah M. The w -integral closure of integral domains [ J ]. J Algebra ,2006,295:195 -210.
  • 4Chang G W. * -Noetherian domains and the ring D[X] N, [J]. J Algebra,2006,297:216 -233.
  • 5Mimouni A. Note on star operations over polynomial rings [ J ]. Commun Algebra,2008,36 ( 11 ) :4249 -4256.
  • 6Anderson D D, Zafndlah M. Weakly factorial donmins and groups of divisibility[J]. Proc Am Math Soc,1990,109(4) :907 -913.
  • 7Anderson D F, Chang G W. Almost splitting sets in integral domains: Ⅱ[ J]. J Pure Appl Algebra,2007,208:351 -359.
  • 8Zafrullah M. Ascending chain conditions and star operations [ J ]. Commun Algebra, 1989,17 (6) : 1523 - 1533.
  • 9Anderson D D, Anderson D F, Fontana M, et al. On v -domains and star operations[J]. Commun Algebra,2009,37(9) :3018 -3043.
  • 10Anderson D D, Kang B G. Pseudo- Dedekind domains and invertible ideals in R [X]T[ J]. J Algebra, 1989,122:323 -336.

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部