摘要
对α>-1,若算子S是加权Dirichlet空间Dα上有限个Toeplitz算子乘积的有限和,利用不同于加权Dirichlet空间再生核的一种新奇异积分核,得到了S为紧算子的充要条件是当z趋于单位圆盘边界时,S的类Berezin变换趋于0.又利用与Bermgan空间不同的酉算子Uz,定义了算子乘积Sz=UzSUz,得到S为紧算子的充要条件是当z趋于单位圆盘边界时,Szw在D内弱收敛到0.
Let α-1 and S be a finite sum of finite products of Toeplitz operators in a weighted Dirichlet space Dα.By using a new singular integral kernel which is different from the recovery kernel in weighted Dirichlet space,it is proved that S is compact if and only if the Berezin transformation tends to 0 as z goes to the boundary of the unit disk.Furthermore,an operator product Sz=UzSUz is defined,where Uz is the unitary operator which is different from that in Bergman space.It is proved that S is compact if and only if Szw is weakly converged to 0 as z goes to the boundary of the unit disk.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第1期36-41,共6页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(1067042)
教育部博士点基金资助项目