期刊文献+

加权Dirichlet空间上紧Toeplitz算子 被引量:5

Compact Toeplitz Operators on Weighted Dirichlet Space
下载PDF
导出
摘要 对α>-1,若算子S是加权Dirichlet空间Dα上有限个Toeplitz算子乘积的有限和,利用不同于加权Dirichlet空间再生核的一种新奇异积分核,得到了S为紧算子的充要条件是当z趋于单位圆盘边界时,S的类Berezin变换趋于0.又利用与Bermgan空间不同的酉算子Uz,定义了算子乘积Sz=UzSUz,得到S为紧算子的充要条件是当z趋于单位圆盘边界时,Szw在D内弱收敛到0. Let α-1 and S be a finite sum of finite products of Toeplitz operators in a weighted Dirichlet space Dα.By using a new singular integral kernel which is different from the recovery kernel in weighted Dirichlet space,it is proved that S is compact if and only if the Berezin transformation tends to 0 as z goes to the boundary of the unit disk.Furthermore,an operator product Sz=UzSUz is defined,where Uz is the unitary operator which is different from that in Bergman space.It is proved that S is compact if and only if Szw is weakly converged to 0 as z goes to the boundary of the unit disk.
作者 王晓峰 夏锦
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期36-41,共6页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(1067042) 教育部博士点基金资助项目
关键词 加权DIRICHLET空间 TOEPLITZ算子 紧算子 weighted Dirichlet space toeplitz operator compact operator
  • 相关文献

参考文献13

  • 1Zhu K H. Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains [ J ]. J Oper Theory, 1988,20: 329 - 357.
  • 2Korenblum B, Zhu K H. An application of Tauberian theorems to Toeplitz operators [ J ]. J Oper Theory, 1995,33:353 -368.
  • 3Stroethoff K. Compact Hankel operators on the Bergman space [J].Illinois J Math, 1998,34 : 159 - 174.
  • 4Zheng D C. Toeplitz and Hankel operators [ J ]. Integral Equations and Operator Theory, 1989,12:280 - 299.
  • 5Axler S, Zheng D C. Compact operators via the Berezin transform[J]. Indiana Univ Math J,1998,2:387 -400.
  • 6Rochberg R, Wu Z J. Toeplitz operators on Dirichlet spaces [ J ]. Integral Equations and Operator Theory, 1992,15:325 - 342.
  • 7Wu Z J. Hankel and Toeplitz opreators on Dirichlet spaces[J]. Integral Equations and Operator Theory, 1992,15:503 -525.
  • 8Cao G F. Fredholm properties of Toeplitz operators on Dirichlet spaces [ J ]. Pacific J Math, 1999,2:209 -223.
  • 9于涛,孙善利.加权Bergman空间上的紧算子[J].数学学报(中文版),2001,44(2):233-240. 被引量:4
  • 10Douglas R G. Banach Algebra Techniques in Operator[ M]. New York, London:Academics Press, 1972.

二级参考文献19

  • 1姚福元,殷朝阳,赵锡英,冯慧芳,曹聪.关于非单调算子的变分问题[J].兰州大学学报(自然科学版),1995,31(3):11-17. 被引量:1
  • 2王晓峰,姚正安.有界连通区域上Dirichlet空间及其算子[J].数学学报(中文版),2006,49(4):893-898. 被引量:1
  • 3陈广锋,曹怀信.非紧距离空间上的Lipschitz-α算子代数[J].广西师范大学学报(自然科学版),2006,24(3):34-37. 被引量:4
  • 4Axler S,India Univ Math J,1998年,47卷,387页
  • 5Zhu K,Operator Theory in Function Spaces,1990年
  • 6曹之江.常微分算子[M].北京:科学出版社,1985..
  • 7郭大均.非线性泛函分析[M].济南:山东科学技术出版社,1985..
  • 8Rochberg R,Wu Z J.Toeplitz operators on Dirichlet spaces[ J].Integr Equat Oper Th,1992,15:325-342.
  • 9Wu Z J.Hankel and Toeplitz operators on Dirichlet spaces[J].Integr Equat Oper Th,1992,15:503-525.
  • 10Lu Yu-feng.A class of Toeplitz opeators on the annulus[J].Chinese Quarterly J Math,2000,15(1):103-106.

共引文献13

同被引文献36

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部