期刊文献+

Camassa-Holm-KP方程的行波解分支 被引量:3

Bifurcations of Travelling Wave Solutions for the Camassa-Holm-KP Equation
下载PDF
导出
摘要 运用平面动力系统理论、分支理论和直接方法,研究了Camassa-Holm-KP方程,证明该方程存在光滑孤立波解和无穷多光滑周期波解.并在不同的参数条件下,给出了光滑孤立波解和光滑周期波解存在的各类充分条件,并求出了上述一些显式精确行波解. By applying the theories of dynamical systems,bifurcation and direct method,the Camassa-Holm-KP equation is studied.The existence of smooth solitary wave solution and smooth periodic wave solution is proved.Under different parametric conditions,various sufficient conditions to guarantee the existence of solitary wave solutions and periodic wave solutions are given.Some exact explicit formulas of the above solutions are listed.
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第1期58-61,共4页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10961011) 广西教育厅科学基金(200707MS004) 广西研究生教育创新计划(2009105950701M28)资助项目
关键词 光滑孤立波 光滑周期波 Camassa-Holm-KP方程 smooth solitary wave smooth periodic wave Camassa-Holm-KP equation
  • 相关文献

参考文献10

  • 1Wazwaz A M. The Camassa - Holm -KP equations with compact and noncompact trave/ling wave solutions[J]. Appl Math Comput,2005,170 ( 1 ) :347 - 360.
  • 2Wazwaz A M. New compact and noncompact solutions for variants of a modified Camassa - Holm equation [ J ]. Appl Math Comput,2005,163 ( 3 ) : 1165 - 1179.
  • 3Wazwaz A M. A class of nonlinear fourth order variant of a generalized Camassa - Holm equation with compact and noncompact solutions [ J ]. Appl Math Comput,2005,165 (2) :485 - 501.
  • 4Chow S N, Hale J K. Method of Bifurcation Theory[ M ]. New York:Springer- Verlag, 1981.
  • 5Guckenheimer J M, Holmes P J. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Field [ M ]. New York: Springer - Verlag, 1983.
  • 6Zhengrong Liu,Boling Guo.Periodic blow-up solutions and their limit forms for the generalized Camassa-Holm equation[J].Progress in Natural Science:Materials International,2008,18(3):259-266. 被引量:6
  • 7He B, Li J B, Long Y, et al. Bifurcations of travelling wave solutions for a variant of Camassa - Holm equation [ J ]. Nonlinear Analysis : Real World Applications, 2008,9 ( 2 ) : 222 - 232.
  • 8黎明.广义BBM方程的有界行波解[J].四川师范大学学报(自然科学版),2007,30(4):478-480. 被引量:9
  • 9谢绍龙,芮伟国.一类非线性KdV方程的有界行波解[J].四川师范大学学报(自然科学版),2008,31(2):141-144. 被引量:5
  • 10刘妍丽,张健.具有高阶非线性项的广义KdV方程的精确孤波解[J].四川师范大学学报(自然科学版),2005,28(2):142-145. 被引量:8

二级参考文献21

共引文献23

同被引文献38

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部