期刊文献+

非带限冲激信号的一种低通采样和重建方法 被引量:1

Lowpass sampling and reconstruction method for non-bandlimited impulse signals
下载PDF
导出
摘要 提出了非带限冲激信号的一种低通采样和重建方法,将冲激信号通过低通滤波器后,按照信号新息率进行采样,然后对采样得到的离散时间信号进行傅里叶变换,采用最小二乘零化滤波算法可以准确地重建原始冲激信号。在冲激信号个数较大及受到噪声影响时,最小二乘零化滤波算法性能恶化,通过适当提高采样率,使用奇异值分解重建算法,可以获得理想的重建结果。分析和仿真结果证明,所提出的非带限冲激信号低通采样和重建方法,能够以较低的速率进行采样和恢复原始冲激信号,并具有良好的抗噪声性能。 A lowpass sampling and reconstruction method for aperiodic non-bandlimited impulse signals is proposed.The impulse signals are passed through a lowpass filter and sampled at the rate of innovation.The sampled discrete time signals are transformed to frequency domain,from which the spectrum coefficients of original impulses are obtained.Then the amplitudes and time shifts of the impulses are found by a least square annihilating filter(LSAF) method.In the presence of noise,the LSAF method will suffer from performance loss.The only way to improve the reconstruction results is to increase the sampling rate and use the singular value decomposition(SVD) reconstruction method.Simulation results show that the proposed sampling and reconstruction methods achieve very good reconstruction results in the presence of noise at the low sampling rate.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第2期248-251,278,共5页 Systems Engineering and Electronics
基金 国家自然科学基金(60572090 60496313)资助课题
关键词 非带限冲激信号 采样和重建 新息率 零化滤波 奇异值分解 non-bandlimited impulse signal sampling and reconstruction rate of innovation annihilating filter singular value decomposition
  • 相关文献

参考文献13

  • 1Vetterli M, Marziliano P, Blu T. Sampling signals with finite rate of innovation[J]. IEEE Trans. on Signal Processing, 2002,20(6) :1417 - 1428.
  • 2Vetterli M, Marziliano P, Blu T. A sampling theorem for periodic piecewise polynomial signals [C]//Proc. IEEE ICASSP, 2001 : 3893 -3896.
  • 3谭雪琴,王建新,刘中,蒋立平.一种基于有限更新率的非带限信号采样方法[J].电路与系统学报,2008,13(4):92-95. 被引量:1
  • 4Maravic I, Vetterli M. Sampling and reconstruction of signals with finite rate of innovation in the presence of noise[J]. IEEE Trans. on Signal Processing, 2005,53(8) :2788 - 2805.
  • 5Dragotti P L, Vetterli M, Blu T. Sampling moments and reconstructing signals of finite rate of innovation: Shannon Meets Strang- Fix[J]. IEEE Trans. on Signal Processing, 2007,55 (5):1741 - 1757.
  • 6Jovalaovic I, Beferull Lozano B. Oversampled A/D conversion and error-rate dependence of nonbandlimited signals with finite rate of innovation [J]. IEEE Trans. on Signal Processing, 2006,54(6) :2140- 2154.
  • 7Stoica P, Moses R. Spectral analysis of signals[M]. Prentice Hall, 2005.
  • 8张贤达.现代信号处理[M].北京:清华大学出版社,1994..
  • 9Vaidyanathan P P, Vrcelj B. On sampling theorems for non bandlim ited signals[C]//Proc, of IEEE ICASSP, 2001 : 3897 - 3900.
  • 10Bin Le, Rondeau T W, Reed J H, et al. Analog-to-digital converters[J]. IEEE Signal Processing Magazine, 2005,22(6) ,69 - 77.

二级参考文献10

  • 1C E Shannon. Communication in the presence of Noise [A]. Proceedings of the IRE [C]. 1949, 37:10-21.
  • 2Enqin Tuncer T. Block-based methods for the reconstruction of finite-length signals from nonuniform samples [J]. IEEE Trans on Signal Processing, 2007, 55(2): 530-541.
  • 3Chen Meng, Tuqan J. Difference sampling theorems for a class of non-bandlimited signals [A]. IEEE International Symposium on Information Theory [C]. 2006. 123-127.
  • 4P P Vaidyanathan. Generalizations of the sampling theorem: seven decades after Nyquist [J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2002, 48(9): 1094-1109.
  • 5Michael Unser. Sampling 50 years after Shannon [J]. Proceeding of the IEEE, 2000, 88(4):569-587.
  • 6Bojan Vrcelj, P P Vaidyanathan. The Role of biothogonal partners in sampling theory for non-bandlimited signals a review [S]. U.S. Patent No.0-7803-7576-9/02, 2002, 9: 355-359.
  • 7Reggiani L, Maggio G M. Rapid search algorithms for code acquisition in UWB impulse radio communications [J]. IEEE Journal on Selected Areas in Communications, 2005, 23(5): 898-908.
  • 8Robert C Qiu, Huaping Liu, Xuemin Shen. Ultra-Wideband for multiple access communications [J]. IEEE Communications Magazine, 2005, 43(2):80-87.
  • 9Da Cunha, Arthur L, Do Minh N. On two-channel filter banks with directional vanishing moments [J]. IEEE Transactions on Image Processing, 2007, 16(5): 1207-1219.
  • 10朱扬明.一类非带限信号的恢复[J].南京邮电学院学报,1992,12(3):58-61. 被引量:3

共引文献51

同被引文献9

  • 1M. Vetterli, P. Marziliano, T. Blu. Sampling signals with finite rate of innovation[J]. IEEE Transactions on Signal Processing, 2002,50(6) : 1417-1428.
  • 2J. Kusuma, I. Maravic, M. Vetterli. Sampling and re-construction of signals with finite rate of innovation in the presence of noise[J]. IEEE Transactions on Signal Processing, 2005,53(8) : 2788-2805.
  • 3Pier Luigi Dragotti, Martin Vetterli, Thierry Blu. Sampling Moments and reconstructing signals of Finite Rate of Innovation; Shannon Meets Strang-Fix[J]. IEEE Transactions on Signal Processing, 2007,55 (5) : 1741-1757.
  • 4Tan, V. Y. F. , Goyal, V.K. Estimating Signals with finite rate of innovation from noisy Samples: A Sto-chastic Algorithm [J]. IEEE Transactions on Signal Processing, 2008,56 (10) :5135-5146.
  • 5J. Berent, P. L. Dragotti, T. Blu. Sampling piecewise sinusoidal signals with finite rate of innovation methods[J]. IEEE Transactions on Signal Processing, 2010,58 (2):613-625.
  • 6Seelamantula, C. S. , Unser, M. A generalized sam-piing method for finite rate of innovation signal recon-struction[J]. IEEE Signal Processing Letters, 2008, 15..813-816.
  • 7Hojjat Akhondi Asl, Pier Luigi Dragottic, Loic Babou-laz. Multi-channel Sampling of Signals With Finite Rate of Innovation[J]. IEEE Signal Letters, 2010, 17 (8): 762-765.
  • 8K. Gedalyahu, R Tur, Y. C. Eldar. Multichannel Sampling of Pulse Streams at the Rate of. Innovation [J]. IEEE Transactions on Signal Processing, 2010,99 (1).1-10.
  • 9J.L. Brown. Multi-Channel Sampling of Low-Pass Signals[J]. IEEE Transactions on Circuits and Sys-tems, 1981, CAS-28(2) : 101 -106.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部