期刊文献+

基于混合多目标进化算法的多无人机侦察路径规划 被引量:5

Multiple UAVs routing in reconnaissance mission based on hybrid multi-objective evolutionary algorithm
下载PDF
导出
摘要 由于侦察任务的复杂性和不确定性,无人机对其目标的侦察时间往往是不确定的。将多无人机对观测时间不确定目标的侦察路径规划问题建模为使任务时间、编队总耗时和编队规模同时最小化的多目标优化路径规划问题。对此,在基于ε-占优的稳态多目标进化算法基础上引入多目标局部搜索,给出了混合ε-占优多目标进化算法,提出了一种使用插入最近点方法的启发式遗传操作。实验结果表明,算法能够有效解决所研究的问题,并且其优势随着问题规模的增大而显著。 The observation time on the target is usually uncertain due to the complexity and uncertainty of reconnaissance missions.The multiple unmanned aerial vehicles(UAVs) reconnaissance problem with a stochastic observation time(MURSOT) is modeled as a multi-objective optimal routing problem including minimizing mission duration,total time and fleet size.For solving this problem,a multi-objective local search is incorporated to a steady-state multi-objective evolutionary algorithm(MOEA) with ε-dominance conception(epsMOEA).Besides,several heuristic genetic operations using the insert-to-nearest method(INM) are proposed.Experimental results show that the proposed method is effective on MURSOT and its superiority is more remarkable with the growth of the size of missions.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2010年第2期326-331,共6页 Systems Engineering and Electronics
基金 国家自然科学基金(60774064)资助课题
关键词 无人机 路径规划 混合多目标进化算法 启发式遗传操作 unmanned aerial vehicle routing problem hybrid multi-objective evolutionary algorithm heuristic genetic operation
  • 相关文献

参考文献11

  • 1Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NAGS-Ⅱ[J]. IEEE Trans. on Evolutionary Computation ,2002,6(2) : 182 - 197.
  • 2Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the strength Pareto evolutionary algorithm [R]. Zurich: Computer Engineering and Networks Laboratory, 2001.
  • 3Knowles J D, Corne D W. The Pareto arehived solution strategy: A new baseline algorithm for multiobjective optimization[C]//Proc, of the 1999 IEEE Congress on Evolutionary Computation, IEEE Press, 1999:98 - 105.
  • 4Corne D W, Knowles J D, Oates M J. The Pareto envelope- based selection algorithm for multiobjective optimization[C]// Proc. of the Sixth International Conference on Parallel Problem Solving front Nature, Springer-Verlag, 2000 : 839 - 848.
  • 5Cheong C Y, Tan K C, Liu D K, et al. A multiobjeetive evolu tionary algorithm for solving vehicle routing problem with sto chastie demand[C] // Proc. of the IEEE Congress on Evolution ary Computation, IEEE Press, 2006 : 1370 - 1377.
  • 6Tan K C, Cheong C Y, Goh C K. Solving multiobjective vehicle routing problem with stochastic demand via evolutionary computation[J]. European Journal of Operational Research , 2006, 117(2) :813- 839.
  • 7Laumanns M, Thiele L, Deb K, et al. Combining convergence and diversity in evolutionary multiobjective optimization [J]. Evolutionary Computation, 2002,10(3) : 263 - 282.
  • 8Deb K, Mohan M, Mishra S. A fast multi-objective evolutionary algorithm for finding well-spread Pareto-optimal solutions, KanGAL-TR-200302[R]. Kanpur:India, KanGAL, Indian Institute Technology of Kanpur, 2003.
  • 9Ishibuchi H, Yoshida T. Hybrid evolutionary multi-objective optimization algorithms [ C]// Proc. of Second International Conference on Hybrid Intelligent Systems, IOS Press, 2002: 163 -172.
  • 10Jaszkiewicz A. Genetic local search for multi-objective combina- torial optimization [J]. European Journal of Operational Research ,2002,137(1) :50 - 71.

同被引文献69

引证文献5

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部