二阶奇异的周期Hamilton系统的非平凡同宿轨道
被引量:3
摘要
证明了二阶周期的奇异Hamilton系统¨q+V′q(t,q) =0 ,当V(t,q)满足Gordon强力条件且有唯一最大值时 ,具有一条非平凡的同宿轨道 .
出处
《科学通报》
EI
CAS
CSCD
北大核心
1998年第20期2147-2153,共7页
Chinese Science Bulletin
同被引文献29
-
1[1]RABINOWITZ P H. Minimal Methods in Critical Point Theory with Applications to Differential Equations[J]. CBMS Reg Conf Ser in Math.1986,65.
-
2[2]A AMBROSETTI, P H RABINOWITZ. Dual variational methods in critical point theory and applications[J].J Funct Anal. 1973,14:349-381.
-
3[3]RABINOWITZ P H. Periodic solutions of some forced singular Hamiltonian systems[A]. PH RABINOWITZ, E.ZEHNDER. Analysis[C], Academic Press, 1990,521-544.
-
4[4]RABINOWITZ P H. Homoclinic for a singular Hamiltonian system[A]. Geometric Analysis and The Calculus of Variations[C],(J.Jost ed.) International Press, 1996,267-297.
-
5[5]AMBROSETTI A, M BADIALE. Homoclinic: Poincare Melnikov type results via a Variational approach[M].Ann.IHP Analyse Nonlin.
-
6[6]RABINOWITZ P H. Homoclinic for an almost periodically forced singular Hamiltonian system[J].Topol Methods Nonlinear,1995,6(1):49-66.
-
7[7]RABINOWITZ P H. Multibump solutions for an almost periodically forced singular Hamiltonian System[J].Electronic journal of Differential Equations,1995,12:1-21.
-
8[8]AMBROSETTI A. Variational methods and nonlinear problems: classical results and recent advances[A]. M MATZEU. A Vignolieds Topological Nonlinear Analysis[C], Progress in Nonlinear Diff Eq And their Applic.15 Birkhauser 1995:1-36.
-
9[9]RABINOWITZ P H.Homoclinic orbits for a class of Hamiltonian systems[J],Proc. Roy. Soc.Edin.1990(114A):33-38.
-
10[10]RABINOWITZ P H. Periodic solutions of Hamiltonian systems[J].Comm Pure Appl Math.1978,31:157-184.
-
1李成岳.不满足Gordon-强力条件的奇异二阶周期Hamilton系统同宿轨道的存在性[J].应用数学学报,2004,27(2):353-360.
-
2王宗信,赵锡英.关于奇异Hamilton系统的无穷多周期解的存在性[J].兰州大学学报(自然科学版),1996,32(3):12-16.
-
3杨守建.平面奇异Hamilton系统的同宿轨道[J].西南交通大学学报,2004,39(6):761-763.
-
4李风泉.一类奇异二阶Hamilton系统的异宿轨道[J].曲阜师范大学学报(自然科学版),1996,22(2):35-38.
-
5王义,李成岳.位势可变号的二阶奇异Hamilton系统的周期解[J].中央民族大学学报(自然科学版),2008,17(2):18-22.
-
6刘宝生.二阶奇异p-Hamilton系统的周期解[J].内蒙古工业大学学报(自然科学版),2002,21(3):161-164.
-
7李元成,夏丽莉,后其宝,王静.奇异Ham ilton系统的Lie对称性[J].江西科学,2005,23(4):388-390. 被引量:1
-
8蒋美跃.关于奇异Hamilton系统周期解的一个注记[J].数学学报(中文版),1993,36(6):758-763.
-
9朱大新,杨宇军.一类2维奇异动力系统具有固定能量的周期轨道[J].数学年刊(A辑),1995,1(2):164-167.
-
10曹亮吉.美国是如何变成数学超级强国的[J].国外科技动态,1989(6):51-53.