期刊文献+

二阶奇异的周期Hamilton系统的非平凡同宿轨道 被引量:3

原文传递
导出
摘要 证明了二阶周期的奇异Hamilton系统¨q+V′q(t,q) =0 ,当V(t,q)满足Gordon强力条件且有唯一最大值时 ,具有一条非平凡的同宿轨道 .
出处 《科学通报》 EI CAS CSCD 北大核心 1998年第20期2147-2153,共7页 Chinese Science Bulletin
  • 相关文献

同被引文献29

  • 1[1]RABINOWITZ P H. Minimal Methods in Critical Point Theory with Applications to Differential Equations[J]. CBMS Reg Conf Ser in Math.1986,65.
  • 2[2]A AMBROSETTI, P H RABINOWITZ. Dual variational methods in critical point theory and applications[J].J Funct Anal. 1973,14:349-381.
  • 3[3]RABINOWITZ P H. Periodic solutions of some forced singular Hamiltonian systems[A]. PH RABINOWITZ, E.ZEHNDER. Analysis[C], Academic Press, 1990,521-544.
  • 4[4]RABINOWITZ P H. Homoclinic for a singular Hamiltonian system[A]. Geometric Analysis and The Calculus of Variations[C],(J.Jost ed.) International Press, 1996,267-297.
  • 5[5]AMBROSETTI A, M BADIALE. Homoclinic: Poincare Melnikov type results via a Variational approach[M].Ann.IHP Analyse Nonlin.
  • 6[6]RABINOWITZ P H. Homoclinic for an almost periodically forced singular Hamiltonian system[J].Topol Methods Nonlinear,1995,6(1):49-66.
  • 7[7]RABINOWITZ P H. Multibump solutions for an almost periodically forced singular Hamiltonian System[J].Electronic journal of Differential Equations,1995,12:1-21.
  • 8[8]AMBROSETTI A. Variational methods and nonlinear problems: classical results and recent advances[A]. M MATZEU. A Vignolieds Topological Nonlinear Analysis[C], Progress in Nonlinear Diff Eq And their Applic.15 Birkhauser 1995:1-36.
  • 9[9]RABINOWITZ P H.Homoclinic orbits for a class of Hamiltonian systems[J],Proc. Roy. Soc.Edin.1990(114A):33-38.
  • 10[10]RABINOWITZ P H. Periodic solutions of Hamiltonian systems[J].Comm Pure Appl Math.1978,31:157-184.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部