期刊文献+

基于多粒度的旅行商问题描述及其蚁群优化算法 被引量:19

An Ant Colony Algorithm Based on Multiple-Grain Representation for the Traveling Salesman Problems
下载PDF
导出
摘要 针对蚁群算法在求解大规模旅行商问题(Traveling Salesman Problems,TSP)中时间性能方面的不足,提出了一种快速的求解算法.首先,从TSP问题描述入手,给出了一种新的多粒度的问题描述模型;然后,基于该模型,设计了包括基于密度聚类的粒度划分、粗粒度的蚁群寻优、粒度间的连接、细粒度的蚁群寻优、粒度间可行解的合成以及循环分段优化6个阶段在内的求解算法.算法的复杂度分析及在中、大规模TSP问题上的实验表明:本算法的时间性能不仅比经典的蚁群算法有显著的提高,而且与近年来的一些同类算法相比也具有一定的优势,显示了快速求解大规模TSP问题的能力. Ant colony optimization (ACO) is a population-based metaheuristic technique to effectively solve combination optimization problems. However, it is still an active research topic how to improve the performance of ACO algorithms. Though there are many algorithms to effectively solve traveling salesman problems (TSPs), there is an application bottleneck that the ACO algorithm costs too much time in order to get an optimal solution. To improve the time performance of ACO in solving large scale TSPs, a fast algorithm is presented in this paper. Firstly, a novel multiple-grain representation model of TSPs is proposed. Based on the model, a new algorithm for TSPs is presented, which mainly contains six phases, i. e. a granularity partition algorithm based on density clustering, an ACO algorithm based on the coarse grain, a connection algorithm between two granularities, an ACO algorithm in the same granularity, a fusion algorithm among granularities, and a subsection optimization algorithm regardless of granularities. The analysis of computation complexity and the experimental results for large number of TSPs demonstrate that the proposed algorithm can greatly improve the speed of convergence in contrast to the classical ACO algorithm, and is highly competitive in time performance compared with some latest elitist ACO algorithms.
出处 《计算机研究与发展》 EI CSCD 北大核心 2010年第3期434-444,共11页 Journal of Computer Research and Development
基金 国家自然科学基金重大基金项目(60496322) 北京市自然科学基金项目(4083034 4102010)
关键词 旅行商问题 多粒度城市模型 蚁群算法 聚类算法 分段优化 TSP multiple-grain city model ACO algorithm clustering algorithm subsection optimization
  • 相关文献

参考文献19

  • 1Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents[J]. IEEE Trans on Systems, Man, and Cybernetics, Part B, 1996, 26 (1): 29-41.
  • 2Gambardella L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies [C] // Proc of the lnt Conf on Evolutionary Computation. Piscataway, NJ: IEEE, 1996:622-627.
  • 3Blum C, Dorigo M. Search bias in ant colony optimization: On the role of competition-balanced systems [J]. IEEE Trans on Evolutionary Computation, 2005, 9(2) : 159-174.
  • 4Blum C, Dorigo M. The hyper-cube framework for ant colony optimization [J]. IEEE Trans on Systems, Man, and Cybernetics, 2004, 34(2) : 1161-1172.
  • 5Dorigo M, Birattari M, Stutzle T. Ant colony optimization Artificial ants as a computational intelligence technique [J]. IEEE Computational Intelligence Magazine, 2006, 1 ( 11 ) :28-39.
  • 6Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Trans on Evolutionary Computation, 1997, 1(1): 53-66.
  • 7Stutzle T, Hoos H H. MAX-MIN ant system [J]. Future Generation Computer System, 2000, 16(8): 889-914.
  • 8黄国锐,曹先彬,王煦法.基于信息素扩散的蚁群算法[J].电子学报,2004,32(5):865-868. 被引量:76
  • 9吴斌,史忠植.一种基于蚁群算法的TSP问题分段求解算法[J].计算机学报,2001,24(12):1328-1333. 被引量:247
  • 10吴庆洪,张纪会,徐心和.具有变异特征的蚁群算法[J].计算机研究与发展,1999,36(10):1240-1245. 被引量:307

二级参考文献54

  • 1康立山 谢云 等.非数值并行算法(第1册)[M].北京:科学出版社,1997..
  • 2Dorigo M, Colorni A, Maniezzo V. Distributed optimization by ant colonies [C] //Proc of the 1st European Conf of Artificial Life. Paris: Elsevier, 1991.. 134-142.
  • 3Dorigo M, Maniezzo V, Colorni A. The ant system: Optimization by a colony of cooperating agents [J]. IEEE Trans on Systems, Man, and Cybernetics, Part B, 1996, 26 (1): 29-41.
  • 4Dorigo M, Gambardella L M. Ant colony system: A cooperative learning approach to the traveling salesman problem [J]. IEEE Trans on Evolutionary Computation, 1997, 1(1): 53-66.
  • 5Gambardetla L M, Dorigo M. Solving symmetric and asymmetric TSPs by ant colonies [C]//Proc of the Int Conf on Evolutionary Computation. Piscataway, NJ: IEEE, 1996:622-627.
  • 6Stutzle T, Hoos HH. MAX-MIN ant system and local search for the traveling salesman problem[C]//Proc of the IEEE Int Conf on Evolutionary Computation. Piscataway, NJ: IEEE, 1997:309-314.
  • 7Blum C, Dorigo M. The hyper-cube framework for ant colony optimization [J]. IEEE Trans on Systems, Man, and Cybernetics, 2004, 34(2): 1161-1172.
  • 8Dorigo M, Birattari M, Stiitzle T. Ant colony optimization: Artificial ants as a computational intelligence technique [J]. IEEE Computational Intelligence magazine, 2006, 11:28-39.
  • 9[1]Garey MR, Johnson DS. Computers and Intractability: a Guide to the Theory of NP-Completeness. San Francisco: W.H. Freeman, 1979.
  • 10[2]Johnson DS, McGeoch LA. The traveling salesman problem: a case study in local optimization. In: Aarts EH, Lenstra JK, eds. Local Search in Combinatorial Optimization. New York: John Wiley and Sons, 1996.

共引文献1048

同被引文献197

引证文献19

二级引证文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部