期刊文献+

基于图像的几何建模技术综述 被引量:46

Survey of Shape from Image
下载PDF
导出
摘要 三维建模是计算机图形学与计算机视觉领域研究的重要问题.近年来,基于图像的三维建模技术因其成本低、操作简单、逼真性高等优势,逐渐得到研究者的重视,相关研究成果也被广泛应用于文物数字保护、智能人机交互、数字特效制作、实时监控等领域,具有极其重要的研究意义与实用价值.基于图像的建模研究由单一图像、图像序列或视频中,通过自动或交互的方式,恢复出物体、场景三维模型的方法.而基于图像的建模首先需要解决的核心问题是基于图像的几何建模问题.它主要研究的是如何从图像中恢复出物体或场景的三维几何信息.而该技术领域当前综述性文章的缺乏成为其发展的制约因素.因此,对基于图像的几何建模技术进行了综述性的分析与讨论.侧重从计算机视觉的角度,按照建模时所使用视觉线索信息的区别,对目前主流的基于图像几何建模方法进行了归类;分别对各类方法进行了基本原理探讨与研究现状介绍,并作了较深入的对比分析与讨论;最后,经过对现有研究工作的分析,对该领域存在的问题作出了总结,并对其未来可能的发展与研究方向给出了一些预测性建议. 3D modeling is an important and interesting problem in both computer vision and computer graphics fields. Recently, image based modeling is receiving more research focuses because it is of low cost, easy to handle and can generate models with very high precision. The technology is also widely used in digital cultural heritage, movies, games, video surveillance, etc. This technology is highly valuable in both research and application. Image based modeling focuses on reconstructing 3D models of objects or scenes directly from single image, image sequences or videos. The whole modeling procedure can be fully automated or facilitated by human interaction. The key problem of image based modeling is shape from image, which focuses on reconstructing 3D geometry information from images. However, review work is not available on this topic recently, which has obviously blocked the development of image based modeling research. As a result, presented in this paper is a review of analysis and discussion on shape from image. Different methods are classified based on the visual clues used in modeling from a computer vision perspective. Basic functions and related works are also introduced for each method. After analyzing and comparing these methods individually, a conclusion is drawn which includes the characteristics, problems and future of shape from image.
出处 《计算机研究与发展》 EI CSCD 北大核心 2010年第3期549-560,共12页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2006AA01Z336 2007AA01Z320) 北京市教育委员会共建项目专项资助
关键词 基于图像的建模 基于图像的几何建模 计算机视觉 视觉线索 综述 image based modeling shape from image computer vision visual cues review
  • 相关文献

参考文献91

  • 1Levoy M, Hanrahan P. Lightfield rendering[C] //Proc of the ACMSIGGRAPH. New York: ACM, 1996: 31-42.
  • 2Matusik W, Buehler C, Raskar R, et al. Image-based visual hulls [C] //Proc of the ACM SIGGRAPH. New York: ACM, 2000:369-374.
  • 3Rocchini C, Cignoni P, Montani M. A low cost 3D scanner based on structured light [C]//Proc of the ACM EuroGraph. New York: ACM, 2001: 299-308.
  • 4Bouguet J Y, Perona P. 3D photography on your desk [C]// Proc of the IEEE Int Conf on Computer Vision. Washington, DC: IEEE Computer Society, 1998: 1-8.
  • 5刘钢,彭群生,鲍虎军.基于图像建模技术研究综述与展望[J].计算机辅助设计与图形学学报,2005,17(1):18-27. 被引量:57
  • 6Martin W N, Aggarwal J K. Volumetric descriptions of objects from multiple views[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1983, 5(2): 150-158.
  • 7Laurentini A. The visual hull concept for silhouette-based image understanding [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1994, 16(2): 150-162.
  • 8Szeliski R. Rapid octree construction from image sequences [J]. Computer Vision, Graphics, and Image Processing: Image Understanding, 1993, 58(1): 23-32.
  • 9Tarini M, Callieri M, Montan C, et al. Marching intersections: An efficient approach to shape from silhouette [C]//Proc of VMV. Washington, DC: IEEE Computer Society, 2002:10-15.
  • 10Franco J, Boyer E. Exact polyhedral visual hulls [C]//Proc of the British Machine Vision Conf. Worcs, UK: BMVA, 2003 : 329-338.

二级参考文献101

  • 1马颂德 张正友.计算机视觉-计算理论与算法基础[M].北京:科学出版社,1997..
  • 2Amenta N, Bern M, Kamvysselis M. A new Voronoi-based surface reconstruction algorithm[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Orlando, Florida, 1998. 415~420.
  • 3Hoppe H, Derose T, Duchamp T, et al. Mesh optimization[J]. Computer Graphics, 1993, 27(3): 19~26.
  • 4Garland M, Heckbert P S. Surface simplication using quadric error metrics[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, California, 1997. 209~216.
  • 5Hoover A, Jean-Baptiste G, Jiang X, et al. An experimental comparison of range image segmentation algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(7): 673~689.
  • 6Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888~905.?A
  • 7Yu Y, Ferencz A, Malik J. Extracting objects from range and radiance images[J]. IEEE Transactions on Visualization and Computer Graphics, 2001, 7(4): 351~364.
  • 8Carr J C, Mitchell T J, Beatson R K, et al. Reconstruction and representation of 3D objects with radial basis functions[A]. In: Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, Los Angeles, California, 2001. 67~76.
  • 9Wang J N, Oliveira M M. Improved scene reconstruction from range images[J]. Computer Graphics Forum, 2002, 21(3): 521~530.
  • 10Bouguet J Y, Perona P. 3D photography on your desk[A]. In: Proceedings of International Conference on Computer Vision, Bombay, India, 1998. 43~50.

共引文献57

同被引文献636

引证文献46

二级引证文献224

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部