期刊文献+

基于脉冲控制的害虫管理数学模型研究 被引量:3

Dynamic Analysis of a Pest Management Mathematical Model with Impulsive Control
原文传递
导出
摘要 研究一类害虫管理SI传染病模型,考虑脉冲投放病虫和人工捕杀相结合,得到系统的灭绝周期解,给出此周期解的全局吸引性,并获得了系统一致持续生存的条件.给出了害虫管理综合防治策略. In this work, we consider an SI epidemic disease model for pest management, and concern about pulse releasing infective pest and killing pest by hands. The 'susceptible pest- exterminate' periodic solution is obtained, and the global attractivity of the 'susceptible pest- exterminate' periodic solution is given. Furthermore, the sufficient condition for'permanence of the system is obtained. The integrated control strategies for pest management are given.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第4期141-148,共8页 Mathematics in Practice and Theory
基金 山东省软科学研究计划项目(2009RKB153) 青岛市科技发展计划项目(KZJ-46) 山东科技大学"群星计划"项目(qx0801030)
关键词 脉冲 害虫灭绝 全局吸引性 持久性 impulsive pest-exterminate global attractivity permanence
  • 相关文献

参考文献12

  • 1MENG Xinzhu, CHEN Lansun. Global dynamical behaviors for an SIR epidemic model with time delay and pulse vaccination [J]. Taiwan Residents Journal of Mathematics, 2008, 12(5): 1107-1122.
  • 2MENG Xinzhu, CHEN Lausun. The dynamics of a new SIR epidemic model concerning pulse vaccination strategy[J]. Applied Mathematics and Computation, 2008, 197(2): 582-597.
  • 3D'ONOFRIO Alberto. Stability properties of pulse vaccination strategy in SEIR epidemic model[J]. Mathematical Biosciences, 2002, 179(1): 57-72.
  • 4STEVO Stevic. On a discrete epidemic model[J]. Discrete Dynamics in Nature and Society, vol.2007, Article ID 87519, 10 pages, 2007. doi: 10. 1155/2007/87519.
  • 5JIAO Jianjun, LONG Wen, CHEN Lansun. A single stage-structured population model with mature individuals in a polluted environment and pulse input of environmental toxin[J]. Nonlinear Analysis: Real World Applications, 2009, 10: 3073-3081.
  • 6JIAO Jianjun, MENG Xinzhu, CHEN Lansun. Global attractivity and permanence of a stage- structured pest management SI model with time delay and diseased pest impulsive transmission[J]. Chaos, Solitons & Fractals, 2008, 38: 658-668.
  • 7JIAO Jianjun, CHEN Lansun, LUO Guilie. An appropriate pest management SI model with biological and chemical control concern[J]. Applied Mathematics and Computation, 2008, 196: 285-293.
  • 8靳祯,马知恩.具有连续和脉冲预防接种的SIRS传染病模型[J].华北工学院学报,2003,24(4):235-243. 被引量:47
  • 9孟新柱,陈兰荪,宋治涛.一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J].应用数学和力学,2007,28(9):1123-1134. 被引量:28
  • 10魏巍,刘少平,舒云星.脉冲接种作用下具有垂直传染的SIR模型的定性分析[J].大学数学,2008,24(3):84-87. 被引量:11

二级参考文献94

  • 1布鲁克史密斯 皮特著 马永波译.未来的灾难: 瘟疫复活与人类生存之战[M].海口: 海南出版社,1999..
  • 2布鲁克史密斯·皮特著 马永波译.未来的灾难:瘟疫复活与人类生存之战[M].海口:海南出版社,1999..
  • 3Lajmanovich A, Yorke J A.A deterministic model for gonorrhea in a nonhomogeneous population [J]. Math.Biosci. , 1976, 28: 221--236.
  • 4Hethcote H W, Van Ark J W.Epidemiological models with heterogeneous populations:.Proportionate mixing, parameter estimation and immunization programs[J].Math. Biosci. , 1987, 84: 85--118.
  • 5Roberts M G, Kao R R.The dynamics of an infectious disease in a population with birth pules[J].Mathematical Biosciences, 1998, 149: 23--36.
  • 6Shulgin B, Stone L, Agur Z. Pulse vaccination strategy in the SIR epidemic model[J]. Bulletin of Mathematical Biology, 1998, 60: 1123--1148.
  • 7Stone L, Shulgin B, Agur Z. Theoretical examination of the pulse vaccination policy in the SIR epidemic model[J].Math. Computer Modeling, 2000, 31: 207--215.
  • 8Busenberg S, Van Driessehe P. Analysis of adisease transimission model in a population with varying size[J]. J.Math. Biol. , 1990, 28: 257--270.
  • 9Lakshmikantham V, Bainov D D, Simeonov P S. Theory of Impulsive Differential Equations[M]. World Scientific,1989.
  • 10Drumi Bainov, Pavel Simeonov. Impulsive Differential Equations: Periodic Solutions and Applications[M]. Longman Seientificand Technical, 1993.

共引文献102

同被引文献21

  • 1孙树林,原存德.捕食者具有流行病的捕食-被捕食(SI)模型的分析[J].生物数学学报,2006,21(1):97-104. 被引量:51
  • 2Falcon L A.Use of Bacteria for Microbial Control of Insects[M].New York:Academic Press,1971.
  • 3Burges H D,Hussey N W.Microbial Control of Insects and Mites[M].New York:Academic Press,1971:67-95.
  • 4Falcon L A.Problems Associated with the Use of Arthropod Viruses in Pest Control[J].Annu Rev Entomol,1976,21:305-324.
  • 5Bailey N T J.The Mathematical Theory of Infectious Diseases and Its Applications[M].London:Griffin,1975:413.
  • 6Burges H D,Hussey N W.Microbial Control of Insections and Mites[M].New York:Academic Press,1971:861.
  • 7Pal A K,Samanta G P.Stability Analysis of an Eco-epidemiological Model Incorporating a Prey Refuge[J].NonlinearAnalysis:Modelling and Control,2010,15(4):473-491.
  • 8Ghosh S,Bhattacharyya S,Bhattacharya D K.The Role of Viral Infection in Pest Control[J].Bulletin of MathematicalBiolog,2007,69:2649-2691.
  • 9Lakshmikanthan V,Bainov D D.Theory of Impulsive Differential Equations[M].Singapore:World Scientific,1989:23.
  • 10Bainov D,Simeonov P S.Impulsive Differential Equations:Periodic Solutions and Applications[M].New York:Longman Publishing Group,1993:66.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部