期刊文献+

概念格在入侵检测中的应用研究 被引量:3

Application research of concept lattice in intrusion detection
下载PDF
导出
摘要 为了发现潜在的、有效的入侵检测规则,提高入侵检测系统的检测率,将概念格与入侵检测技术相结合提出了一种基于概念格理论的入侵检测系统。系统通过对收集的数据进行预处理、数据规范化,使用属性约简得到最小属性集构建概念格,同时分析概念间的蕴涵关系,获得非冗余的分类规则。基于概念格的入侵检测模型与其它检测方法相比要求的训练数据获取简单,实验结果表明,使用该模型减少了实现分类的运算量,提高了入侵检测的检测率,有效控制了检测的误检率。 In order to discover potential and effective intrusion detection rules, intrusion detection system based on concept lattice is given. The system includes data preprocessing, data standardization, attribute reduction, productionofconceptlattice. The implication relations between concepts are analyzed, the non-redundant classification rules are extrated. The intrusion detection model based on concept lattice compared with other detection methods easy access to training data. The experiment shows that the use of a model reduces the amount of computing, improves the accuracy of intrusion detection, effectively controls the false rate of detection.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第5期979-981,998,共4页 Computer Engineering and Design
基金 河南省高等学校青年骨干教师计划基金项目(豫教高[2008]708-116)
关键词 概念格 概念 入侵检测 属性约简 分类规则 concept lattice concept intrusion detection attribute reduction sort rules
  • 相关文献

参考文献7

二级参考文献40

  • 1彭宏.基于粗糙集理论的入侵检测方法研究[J].电子科技大学学报,2006,35(1):108-110. 被引量:13
  • 2刘军.数据挖掘技术在网络入侵检测中的应用[J].南京工业大学学报(自然科学版),2006,28(2):79-84. 被引量:8
  • 3诸葛建伟,王大为,陈昱,叶志远,邹维.基于D-S证据理论的网络异常检测方法[J].软件学报,2006,17(3):463-471. 被引量:56
  • 4Jiawei Han,Micheline Kamber.Data minning concepts and techniques[M].北京:机械工业出版社,2006.
  • 5Lee W.A data mining framework for constructing features and models for intrusion detection systems [D].New York:Columbia University, 1999.
  • 6[1]Forrest S, Perrelason AS, Allen L, Cherukur R. Self_Nonself discrimination in a computer. In: Rushby J, Meadows C, eds. Proceedings of the 1994 IEEE Symposium on Research in Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1994. 202~212.
  • 7[2]Ghosh AK, Michael C, Schatz M. A real-time intrusion detection system based on learning program behavior. In: Debar H, Wu SF, eds. Recent Advances in Intrusion Detection (RAID 2000). Toulouse: Spinger-Verlag, 2000. 93~109.
  • 8[3]Lee W, Stolfo SJ. A data mining framework for building intrusion detection model. In: Gong L, Reiter MK, eds. Proceedings of the 1999 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 1999. 120~132.
  • 9[4]Vapnik VN. The Nature of Statistical Learning Theory. New York: Spring-Verlag, 1995.
  • 10[5]Lee W, Dong X. Information-Theoretic measures for anomaly detection. In: Needham R, Abadi M, eds. Proceedings of the 2001 IEEE Symposium on Security and Privacy. Oakland, CA: IEEE Computer Society Press, 2001. 130~143.

共引文献191

同被引文献49

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部