期刊文献+

基于项目属性的用户聚类协同过滤推荐算法 被引量:28

Collaborative filtering recommendation algorithm based on user clustering of item attributes
下载PDF
导出
摘要 协同过滤推荐算法是个性化推荐服务系统的关键技术,由于项目空间上用户评分数据的极端稀疏性,传统推荐系统中的用户相似度量算法开销较大并且无法保证项目推荐精度。通过对共同感兴趣的项目属性的相似用户进行聚类,构建了不同项目评价的用户相似性,设计了一种优化的协同过滤推荐算法。实验结果表明,该算法能够有效避免由于数据稀疏性带来的弊端,提高了系统的推荐质量。 Collaborative filtering recommendation algorithm is key technologies of personalized recommendation system, as the serious sparsity data of rated items, the similar users of active user is distribution of scattered. The traditional collaborative filtering recommender system algorithm consumes too many resources to search the nearest neighbor, as well as reliability is poor. A novel collaborative filtering recommender algorithm based on user clustering of item attributes is proposed. This algorithm reduces the negative effect on quality of recommendation, and shrinks the searching scope, which improves recommendation results for the system.
出处 《计算机工程与设计》 CSCD 北大核心 2010年第5期1038-1041,共4页 Computer Engineering and Design
基金 河北省自然科学基金项目(F2009000477)
关键词 协同过滤 个性化推荐服务 推荐系统 项目属性 用户聚类 collaborative filtering personalized recommendation server recommender system item attributes user clustering
  • 相关文献

参考文献10

  • 1Lee J S,Jun C H,Lee J,et al.Classification-based collaborative filtering using market basket data [J]. Expert System with Applications,2005,29(3 ):700-704.
  • 2Velasquez Juan D,Palade Vasile.Building a knowledge base for implementing a web based computerized recommendation system [J]. International Journal on Artificial Intelligence Tools, 2007,16(5):793-828.
  • 3Makoto Iguchi,Shigeki Goto.Anonymous P2P web browse history sharing for web page recommendation[J].IEICE Trans Inf& Syst,2007,E90-D(9): 1343-1353.
  • 4Segrera Saddys,Moreno Maria.Application of multiclassifiers in web mining for a recommender system[J]. Maria N. WSEAS Transactions on Information Science and Applications, 2006,3 (12):2471-2476.
  • 5Adomavicius G, Tuzhilin A.Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions[J].IEEE Trans on Knowledge and Data Engineering, 2005,17(6):734-749.
  • 6王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐[J].计算机应用,2007,27(5):1225-1227. 被引量:43
  • 7李聪,梁昌勇.基于属性值偏好矩阵的协同过滤推荐算法[J].情报学报,2008,27(6):884-890. 被引量:19
  • 8Ahn H J.A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem [J]. Information Sciences,2008,178(1):37-51.
  • 9SARWAR B,KARYPIS G KONSTAN J.Item-based collaborative filtering recommendation algorithms [C].Proc of the 10th International Conference on World Wide Web. New York: ACM Press,2001:285-295.
  • 10邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤推荐算法[J].软件学报,2003,14(9):1621-1628. 被引量:558

二级参考文献27

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2周军锋,汤显,郭景峰.一种优化的协同过滤推荐算法[J].计算机研究与发展,2004,41(10):1842-1847. 被引量:103
  • 3Schafer J B, Konstan J A, Riedl J. E-Commerce Recommendation Apphcations [ J ]. Data Mining and Knowledge Discovery, 2001, 5(1-2): 115-153.
  • 4Schafer J B, Konstan J A, Riedl J. Recommender Systems in E-Commerce[C]// Proceedings of the ACM Conference on Electronic Commerce. New York: ACM Press, 1999: 158-166.
  • 5Sarwar B M, Karypis G, Konstan J A, et al. Analysis of Recommendation Algorithms for E-Commerce [ C ]// Proceedings of the 2nd ACM conference on Electronic commerce. New York: ACM Press, 2000: 158-167.
  • 6Maltz D, Ehrlich K. Pointing the Way: Active Collaborative Filtering [ C]//Proceedings of the 1995 ACM SIGCHI Conference on Human Factors in Computing Systems. New York: ACM Press, 1995: 202-209.
  • 7Sarwar B, Karypis G, Konstan J, et al. hem-based Collaborative Filtering Recommendation Algorithms [ C ]// Proceedings of the 10th International Conference on World Wide Web. New York: ACM Press, 2001 : 285-295.
  • 8Good N, Schafer J B, Konstan J A, et al. Combining Collaborative Filtering with Personal Agents for Better Recommendations[C]// Proceedings of the 16th National Conference on Artificial Intelligence and the 11th Innovative Applications of Artificial Intelligence Conference. Menlo Park, CA: AAAI Press, 1999: 439-446.
  • 9Sarwar B M, Konstan J A, Borchers A, et al. Using Filtering Agents to Improve Prediction Quality in the GroupLens Research Collaborative Filtering System [ C ]// Proceedings of the 1998 ACM Conference on Computer Supported Cooperative Work. New York: ACM Press, 1998: 345-354.
  • 10Deerwester S, Dumais S T, Fumas G W, et al. Indexing by Latent Semantic Analysis [ J ]. Journal of the American Society for Information Science, 1990, 41(6) : 391-407.

共引文献606

同被引文献253

引证文献28

二级引证文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部