期刊文献+

对称Loewner矩阵Moore-Penrose逆的快速算法

A fast algorithm for the Moore-Penrose inverse of symmetric Loewner matrix
下载PDF
导出
摘要 对称Loewner矩阵在自然科学及工程技术中有着广泛的应用,许多问题都归结为求对称Loewner矩阵及其相关矩阵的代数问题.论文通过构造特殊分块矩阵并研究其逆矩阵,给出了秩为n的m×n对称Loewner矩阵Moore-Penrose逆的快速算法,该算法的计算复杂度为O(mn)+O(n2),而通过L+=(LTL)-1LT计算的复杂度为O(mn2)+O(n3).实验数据也表明前者在用时和效率方面均优于后者. Symmetric Loewner-type matrix has broad applications in natural sciences and engineering technologies.Many of the issues were summarized for the sake of symmetric Loewner(type) matrix and its correlation matrix algebraic problem.This article presented a new fast algorithm of Moore-Penrose inverse for an m×n symmetric Loewner-type matrix with full column rank by forming a special block matrix and studied its inverse.Its computation complexity was O(mn)+O(n^2),but it was O(mn^2)+O(n^3) by using L^+=(L^TL)^-1L^T.Experimental results also showed that the former in terms of time and accuracy were better than the latter.
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2010年第1期11-15,共5页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(60703118 60674108) 陕西省教育厅专项科研计划基金资助项目(07JK374)
关键词 对称Loewner矩阵 MOORE-PENROSE逆 三角分解 快速算法 symmetric Loewner matrix Moore-Penrose inverse triangular factorization fast algorithm
  • 相关文献

参考文献9

  • 1王玉杰,张大克.回归分析中参数估计的一种新方法[J].应用数学与计算数学学报,2001,15(2):85-89. 被引量:2
  • 2Ben-Israel A. The Moore of Moore-Penrose inverse[ J]. Electron Linear Algebra Appl,2002,9 : 150 - 157.
  • 3Baksaraly J K, Baksaraly O M. Particular formulae for the Moore-Penrose inverse of a columnwise partitioned matrix [ J]. Linear Algebra Appl,2007,421 : 16 - 23.
  • 4Vavrin Z. Multiplication of diagonal transforms of Loewner matrices [ J ]. Linear Algebra Appl, 1988,58:75 - 95.
  • 5Fiedler M, Vavrin Z. Polunomials compatible with a symmetric Loewner matrix[J].Linear Algebra Appl, 1993,190: 235 - 251.
  • 6Fiedler M, Vavrin Z. A subclass of symmetric Loewner matrices [ J ]. Linear Algebra Appl, 1992,170:47 - 52.
  • 7Bevilucqua R, Bozzo B. On algebra of symmetric Loewner matrices [ J ]. Linear Algebra Appl, 1996,248:241 - 246.
  • 8陆全.对称Loewner型矩阵三角分解的快速算法[J].工程数学学报,2003,20(2):139-142. 被引量:4
  • 9徐猛,徐仲,史忠科,靳艳飞.对称Loewner型矩阵的逆矩阵的快速三角分解算法[J].三峡大学学报(自然科学版),2003,25(6):552-554. 被引量:3

二级参考文献9

  • 1Fiedler M. Hankel and Loewner matrices [ J ]. Linear Algebra Appl, 1984; 58 : 75 - 95.
  • 2Vavrin Z. Multiplication of diagonal transforms of Loewner matrices[J]. Linear Algebra Appl,1988;99:l -40.
  • 3Fiedler M, Vavrin Z. Polynomials compatible with a symmetric Loewner matrix[J]. Linear Algebra Appl, 1993;190:235 - 251.
  • 4张顺,矩阵及其广义逆,1996年,166页
  • 5方保容,矩阵论基础,1993年,289页
  • 6裴鑫德,多元统计分析及其应用,1991年,455页
  • 7夏结来,数理统计与应用概率,1988年,3卷,1期,21页
  • 8陈希孺,近代回归分析,1987年,218页
  • 9刘乾开,农业环境保护,1986年,2期,1页

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部